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1. Program Co-Chairpersons
Prof. Dr. Peter Russer Prof. Dr. Josef A. Nossek
Ferdinand-Braun-Institut Lehrstuhl fdr Netzwerktheorie
fir H6chstfrequenztechnik Berlin und Schaltungstechnik
Rudower Chaussee 5 Technische Universitlt Mfinchen
12489 Berlin ArcisstraBe 21, 80333 MOinchen
Germany Germany
Tel: +49/30/6392-2601 Tel: +49/89/2105-8501
Fax: +49/30/6392-2602 Fax: +49/89/2105-8504

2. Objectives

Due to advances in different areas of microwave- and millimeter-wave techniques,
demand for efficient CAD tools has grown. This statement is today as true as it was at
our last workshop held two years ago in Munich on this topic. The numerical analysis
in time domain is attractive since it describes the evolution of physical quantities in a
natural way. The two basic concepts, the modelling of fields and networks, are more
closely related than it seems at first glance. In the TLM method, for example, the
network model is the basis for modelling electromagnetic fields. Another example is
the application of generalized S-matrix methods and diacoptics in field theory. The
purpose of this conference is to stimulate synoptic considerations of field and network
theory and to promote a lively exchange between researchers engaged in these fields.

3. Organizer

The organizer of this workshop is Prof. Dr. Peter Russer.

4. Venue

The workshop will take place at the Hotel Ambassador Berlin, Bayreuther Str. 42/43,
10787 Berlin, Germany, Tel.: +49/30/21902-0, Fax: +49/30/21902-380.

5. Conference Secretary

For any questions or information about the workshop, please contact the Program
Co-Chairpersons or au.t...,cation .......... ................

Michael Krumpholz, Conference Secretary By
Ferdinand-Braun-Institut fer H6chstfrequerztechnik Berlin Distribution I
Rudower Chaussee 5, 12489 Berlin Availability Codes
Tel: +49/30/6392-2625, Fax: +49/30/6392-2612 Avail and/or
e-mail: krurnpholOfbh.wtza-berlin.de Dist Special

6. Registration '-I
Advance Registration may be done by the Registration Form enclosed in tis rei-
nary Program. On-site registration is also possible. The registration office at the Hotel
Ambassador will be open at October 28, from 8:00 a.m. to 10:30 p.m..

Please note that late registration as well as on-site registration is subject to a late fee.



7. Projection Facilities

Projection equipment available will be a standard slide and an overhead projector.

8. Accommodation

Blocks of rooms have been reserved at the following hotels near or at the workshop
site in Berlin at special workshop rates. Please make your reservations directly with
the hotel. Refer to the Ferdinand-Brauw-Institut fir H6chstfrequenztechnik to obtain
the special rate.

Hotel Ambassador Bayreuther Str. 42/43
Tel.: +49/(0)30/21902-0 10787 Berlin
Fax : +49/(0)30/21902-380 205 DM single, 225 DM double

Hotel Westerland Knesebeckstr. 10
Tel.: +49/(0)30/3121004 10623 Berlin
Fax : +49/(0)30/3136489 100 DM single, 155 DM double

Hotel Chariot Giesebrechtstr. 17
Tel.: +49/(0)30/3234051 10629 Berlin
Fax : +49/(0)30/3240819 60/90/115 DM single, 170 DM double

Please note: The rooms are only reserved until September 14, 1993.

9. Transportation

Berlin is served by three airports: Berlin-Tegel, Berlin-Tempelhof and Berlin-Sch6ne-
feld. Berlin-Tegel is situated in the north-west of Berlin. You may take a taxi (about
30 DM) or the bus no. 109 directly to Berlin Zoologischer Garten (Berlin-Zoo) (35
min.). Berlin-Tempelhof located in the south-east of Berlin. You may choose a taxi
(about 25 DM) or the underground (U-Balm), U8 to Hallesches Tor and change to the
U1 for going to Berlin-Zoo. If you arrive at Berlin-Sch6nefeld in the very south-east of
Berlin, the most preferable way to get into the center is taking the S-Bahn directly to
Berlin-Zoo (70 min.). A taxi will be about 60 DM. In general, public transportation in
Berlin is the most preferable way of transportation within the city. During day-time,
the underground and buses run every five or ten minutes.

If you are arriving by train, the trains will stop at Berlin-Zoo or Berlin-Hauptbahnhof
from where you can take the S-Bahn directly to Berlin-Zoo. If you are arriving by
car, leave the Autobahnring no. 10 at Autobahndreieck Drewitz to the Autobahn no.
115. At Autobahndreieck Funkturm, head towards north (look for the direction to the
airport Berlin-Tegel) and get off the motorway at Kaiserdamm to arrive at Berlin-Zoo
via Ernst-Reuter Platz. For your local orientation, we have enclosed two maps.

10. Program
This program consists of the invited talks and the non-invited contributions. Late
contributions presented in session B2 will be accepted at the workshop.



Thursday, October 28, 1993:

8:00 Registration

Session Al (Chairmen: P. Russer, W.J.R. Hoefer)

8:30 Opening Session
8:40 Time Domain Wave-Oriented Data Processing L. Felsen

or: How to Extract Phenomenology from Observations
9:20 Comparison of Different Field Theoretical Methods of R. Sorrentino

Analysis of Distributed Microwave Circuit Elements
10:00 -Break-
10:20 Time Domain Electromagnetic Field Computation T. Weiland

with Finite Difference Methods
11:00 Finite Difference Time Domain Models for Coplanar V. Fouad Hanna

Waveguide Discontinuities
11:40 Enhanced FDTD Method for Active and Passive B. Houshmand, T. Itoh

Microwave Structures
12:20 -Break-

Session A2 (Chairmen: %. Sorrentino, J.A. Nossek)

13:20 On the Field Theoretic Foundation of the Transmission P. Russer, M. Krumpholz
Line Matrix Method

14:00 TLM Modelling of Guiding and Radiating Microwave W.J.R. Hoefer
Structures

14:40 Modelling of Planar Microwave Structures in Frequency R. Vahldieck
and Time Domain

15:20 -Break-
15:40 Time Domain Simulation of Non-Linear Networks M.I. Sobhy, E.A. Hosny

Containing Distributed Interconnect Structures
16:20 Transient Analysis of Large Non-Linear Networks U. Feldmann

Social Event

19:00 Piano Recital: Diana Lawton
Steinway-Haus, Hardenbergstr. 9

20:30 Berlin Evening
Berlin Pavillon, Stra&e des 17.Juni 100

L



Friday, October 29, 1993:

Session BI (Chairmen: M.I. Sobhy, T. Itoh)

8:00 Dynamic Simulation of Semiconductor Devices R. Stenzel, W. Klix
8:40 Signal-Processing Approach to Robust Time-Domain A. Fettweis

Modelling of Electromagnetic Fields
9:20 New Results in Transient Analysis of Crystal Ch. Schmidt-Kreusel,

Oszillators W. Mathis
9:40 -Break-

10:00 Adaptive Detection and Tracking of Active Scatterers M. Zouak, J. Saillard
by Cascaded Notch Filters

10:20 Sub-mm Wave Circuit Characterization Using the N.I. Dib, L.P.B. Katehi
Finite Difference Time Domain Method

10:40 FDTD Modelling of Wirebond Interconnects E. Pillai, C. Bornkesscl,
W. Wiesbeck

11:00 Space and Time Discretization in Field Computation C. Christopoulos,
Using TLM J.L. Herring

11:20 Distributed Computing for Transmission Line Matrix P.P.M. So, W.J.R. lloefer
Method

11:40 TLM: Order of Accuracy Enhancement D. de Cogan, A. Soulos,
P. Enders

12:00 -Break-

Session B2 (Chairmen: L.P.B. Katehi, L. Felsen)

13:00 Rigorous and Fast Computation of Modal N1. Mongiardo, M. Righi,
Johns' Responses R. Sorrentino, W.J.R. Hoefcr

13:20 Transmission-Line Matrix Modelling and Huygens' P. Enders
Principle or The Range of Applicability of TLM

13:40 Towards Better Understanding of the SCN TLM M. Celuch-Marcysiak
Method for Inhomogenous Problems

14:00 Generation of Lumped Element Models of P. Russer, N1. Righi,
Distributed Microwave Circuits C. Eswarappa, W.J.R. Iloefer

14:20 Towards Exactly Modelling Open/Absorbing P.Enders, A.]. Wlodarczyk
Boundaries

14:40 -Break-

a



Friday, October 29, 1993:

Session B2 (Chairmen: L.P.B. Katehi, L. Felsen)

15:00 Simulation of Electromagnetic Fields in Nonlinear D. Jaeger
and Photonic Waveguiding Structures

15:10 Derivation of Stability Condition for the Time M. Mrozowski
Domain Method of Moments Algorithms Using
Functional Analysis Approach

15:20 Convergence Criteria for Maxemol - a Numerical W.B. R1, R.A.C. Metaxas
Scheme for the Solution of Maxwell's Equations
Using the Method of Lines

15:30 Broadband Simulation of Open Waveguide M. Dohlus, P. Thoma,
Boundaries within Large Frequency Ranges T. Weiland

15:40 On the Geometrical Structure of Network Equations St. Paul
15:50 Further Late Contributions
16:00 Concluding Session: open forum, panel discussion,

approximately finished by 17:00

"C



Teilnehmerliste

Invited Speakers

Dr. U. Feldmann Siemens AG

Prof. Dr. L.B. Felsen Polytechn. University Farmingdale

Prof. A. Fettweis RuhruniversitAt Bochum

Dr. V. Fouad Hanna France Telecom

Prof. W. J. R. Hoefer University of Victoria

Prof. T. Itoh University of California, LA

Prof. J.A. Nossek TU Munchen

Prof. P. Russer FBH Berlin

Prof. M. Sobhy University of Kent at Canterbury

Prof. R. Sorrentino Universita di Perugia

Prof. R. Stenzel Hochschule fur Technik und Wirtschaft,
Dresden

Prof. R. Vahldieck University of Victoria

Prof. T. Weiland TH Darmstadt



Patciat
St. Aidamn TU Berlin
B. Bader FBH Berlin
Prof. H.J. Bex FH Aachen
Dr. E. Biebl TU Munchen
C h. Bornkessel UniversitAt Karlsruhe
M. Celuch-Marcysiak Warsaw University
Prof. C. Christopoulos University of Nottingham
Dr. 0. De Cogan School of Information Systems,

_______________ ____ Norwich
Dr. H. Delfs Rohde & Schwarz
R. Doerner FBH Berlin
Dr. P. Enders
Dr. U. Erz Universit~t Stuttgart
Dr. W. B. Fu Cambridge University
Ch. Fuchs Universitat Karlsruhe
P. Gelin ENST - Bretagne
R. Gillard LCST-INSA de Rennes
Dr. R. Gr~ndler FBH Berlin
Dr. V. Gungerich TU Munchen
Dr. R. Guther FBH Berlin
Prof. G. Hartler FBH Berlin
Dr. J. Haase Fraunhofer-Institut fur Integrierte

____________________Schaltungen, Dresden
Dr. J. Heine FBH Berlin
Dr. W. Heinrich FBH Berlin
Dr. P. Heymann FBH Berlin
Ch. Huber FBH Berlin
B. Isele TU Munchen
Prof. D. Jager Universit~t Duisburg
L. P. B. Katehi University of Michigan
M. Krumpholz FBH Berlin
Dr. H. Kumric Universitat Stuttgart
St. Lindenmayer TU Munchen
Prof. W. Mathis Bergische UniversitAt Wuppeital
Dr. M. Michalski TU Munchen
Dr. M. Mrozowski TU Gdansk
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Dr. St. MOller TU MOnchen
M. Ney ENST - Bretagne

M. Niederhoff FBH Berlin

A. Nonnenmacher Universit~t Karlsruhe

Dr. St. Paul TU MOnchen

E. Pillai UniversitAt Karlsruhe

Dr. H. Prinzler FBH Berlin

St. R6mer FBH Berlin

M. Rudolph TU Berlin

S. Sattler TU Munchen

M. Schinke Universitat Karlsruhe

Dr. F. Schnieder FBH Berlin

M. Sihapustan TU Berlin

P. So University of Victoria

G. Stankus TU Berlin

P. Thoma TH Darmstadt

A. Wien Kernforschungszentrum Karlsruhe

H. Wiesmann UniversitAt Karlsruhe

M. Witting SIBET GmbH

F. Zinkler FBH Berlin

M. Zouak IRESTE Universite de Nantes

Dr. H. Zscheile FBH Berlin
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Recital Program
Berlin, Germany, October 1993

Diana Lawton, Piano

W.A. Mozart Sonate d-dur, KV. 311
Allegro con spirito
Andante con espressione
Rondo

II

C. Debussy L'Isle Joyeuse

Intermission

III

F. Chopin Sonate III h-moll, Op. 58
Allegro maestoso
Scherzo molto vivace
Largo
Finale presto, ma non tanto
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Universita' di Perugia Comett
European Community program on cooperation between universities and industry

regarding training in the field of technology

COMETT course on

Numerical Methods in the Modeling of
Microwave Circuits

November 15-19, 1993 - Perugia - Italy

The course on "Numerical Methods in the Modeling of Microwave Circuits" has been organized within the COMETI"
program to provide you state-of-the-art information on computer techniques for the accurate electromagnetic analysis of
microwave circuits.
A wide range of numerical techniques will be presented by Internationally recognized experts in a 5 day intensive course.
One full day of presentation will be devoted to each topic.
In addition to lectures describing the numerical techniques, software demonstration on PCs and workstations will be made
available to the attendees.

PROGRAM: COORDINATORS:

Monday, November 15, 1993. 9-12 a.m., 2-5 p.m. Prof. P. Russer, FBH, Berlin
Microwave circuit modelling using the
transmission line matrix m Germany

Tuesday, November 16, 1993 9-12 a.m., 2-S pm. Prof. P. Gwllon, University of Limoges
Finite Element Method applied to the analysis of Prof
2D and 3D microwave structures France

Wednesday, November 17, 1993 9-12 a.m, 2-5 p.m. Prof. A. Cappy, University of Lille
MESFET and HEMT modelling for CAD France

Thursday, November 18,1993 9-12 &.m., 2-5 pm.
Full wave analysis of microwave and mm-wave Prof. R. Sorrentino, University of Perugia
structures using 3D-mode matching techniques Italy

Friday, November 19, 1993 9-12 am., 2-5 p.m.
Advanced linear and non linear modelling techniques in the Prof. R. H. Jansen, University of Duisbur[
framework of a commercial microwave/mmw CAD package Germany

L



COURSE REGISTRATION FORM

Please fill in and return or fax this form to: blitato di Elettromka - Ulversiv t dl Perugla -
Loc. Santa Lucia
"06131 PERUGIA

ITALY
Tel. +39-75-585/2669 Catena /2633 or 2659 Roselli
Fax. +39-75-585-2654

lease register me to the COMETr course on "Numerical Methods in the Modeling of Microwave Circuits" (November 15-19,1993)

.ast nam e ......................................................................................... First nam e ......................................................................................................

flfiliation ........................................................................ A ddress .......................................................................................................................

.'ountry ...................................................... Zip ................................................ Telephone ........................................ Fax ..................................
Signature ........................................................................

tegistration fee: LIt. 300.000 (please sign your way of payment), Deadline: 5/11/93

J money order payable to "Comorzlo TUCEP, cc ° 443W23, Cmas dl Rpnmnmio dl Perugia, Ag. a 9, specifying for "COMETT
Course s" 2"

1 cash at the registration desk

")RACTICAL INFORMATION

"he course will be given in English and will take place at the " Centro di Calcolo " of the University of Perugia, Loc.
;.Lucia, Perugia, Italy. The full course price is 300.000 Italian Lire, including course notes, copies of viewgraphs.

iccommodations
k list of possible accommodations is as following. For more detailed information you can refer directly to the
Tourist Office of Perugia -Information Service-" P.za IV Novembre, Perugia, Tel. +39-75-5736458 Fax. +39-75-
:736828.

Hotel La Rosetta" **** P.za Italia,19, Perugia Tel +39-75-5720841 Fax +39-75-5720841
Hotel Fortuna" **** V. Bonazzi, 19, Perugia Tel +39-75-5722845 Fax +39-75-5735040
Hotel Gib" ** * * V. d'Andreotto,19, Perugia Tel +39-75-5731100 Fax +39-75-5731100
Hit Hotel" **** S. S. Trasimeno Ovest,159, Perugia Tel +39-75-5179247 Fax +39-75-5178947
Hotel Rosalba" ** V. del Circo, 7, Perugia Tel +39-75-5728285

low to get to PERUGIA

"LIGHTS:
'rom Milan to Perugia dep. 7:05 am. arr. 9:05 am. via Ancona

dep. 6:25 p.m. anr. 7:35 p.m.
"RAINS:
"rom Rome to Perugia dep. 6:55 a.m arr. 9:21 a.m.
All trains change in 7:30 a.m. 10:19 a.m.
'oligno except the 1 0:05 a.m. 1 2:34 a.m.
ntercity) 1:55 p.m 4:00 p.m. Intercity, via Terontola

2:50 p.m. 5:19 p.m.
3:25 p.m. 6:24 p.m.
5:25 p.m. 8:26 p.m.
6:45 p.m. 9:16 p.m.
8:30 p.m. 1 0:36 p.m. Intercity, no on Saturday

LOADS:
'rom North exit VALDICHIANA from the Al highway then about 58 Km to Perugia.
*rom South exit ORTE from the AI highway then about 95 Km to Perugia.

I l l ~ lll lll l I II [] lm A



ABOUT THE LECTURERS

Peter RUSSER was born in Vienna, Austria, in 1943. He received the Dipl. Ing. degree in 1967 and the Dr. techn. degree in 1971,
both in electrical engineering and both from the Technische Universitat in Vienna, Austria. From 1968 to 1971, he has been an
Assistant Professor at the Tochnische Universitat in Vienna. In 1971 he joined the Research Institute of AEG-Telefunken in Ulm,
where he worked on fiber optic communications, high speed solid-state electronic circuits, laser modulation and fiber optic
gyroscopes. In 1979 he was co-recipient of the NTG award. Since 1981 he has held the chair of Hochfrequenztechnik at the
Technische Universitat Munchen. In 1990 he was Visiting Professor at the University of Ottawa. Since October 1992 he is the
Director of the Ferdtnand-Braun-Institut fur Hochstfrequenztecunik in Berlin. His current research interests are integrated microwave
and millimeter wave circuits, electromagnetic fields, statistical noise analysis of microwave circuits, and methods for CAD of
microwave circuits. Pet Russer is the author of numerous scientific papers in these areas.
He is IEEE Senior Member and member of the German Informationsteclhnische Geseiishaft and the Austrian and German Physical
Societies.

Pierre GUILLON was born in May 1947. He received the Doctorat es Sciences degree from the University of Limoges, France, in
1978.
From 1971 to 1980 he was with the Microwave and Optical Communication Laboratory Univ../: of Limoges, where he studied
dielectric resonators and their applications to microwave and millimeter -wave circuits.
From 1981 to 1985, he was a Professor of Electrical Engineering at the University of Poitiers, France.
In 1985, he joined again the University of Limoges, where he is currently a Professor and head of research group in the area of
microwave and millimeter-wave devices. He is a member of IEEE.

Alain CAPPY was born in Chalons sur Marne, France on January 15, 1954. In 1977 he joined the "Centre Hyperfr6quence et
Semiconducteurs" University of Lille, France. In 1986 he received the "Docteur es Sciences" degree from the University of Lille for
his work on the modeling and the characterization of MESFET$s and HEMTs. He Is now Professor of Electronics at the University
of Lille. His main research Interests are concerned with the modeling, the realization and the characterization of low-noise devices
for applications in the centimeter and millimeter wave ranges. He is the founder of the International GaAs Simulation Group.

Roberto SORRENTINO received the Doctor degree in Electronic Engineering from the University of Rome "La Sapienzae, Rome,
Italy in 1971. In 1971 he joined the Department of Electronics of the same University where he became an Assistant Professor in
1974, and an Associate Professor from 1982 to 1986. In 1983 and 1986 he was appointed as a Research Fellow at the University of
Texas at Austin, USA. From 1986 to 1990 he was a Professor at the second University of Rome "Tor Vergata". Since November
1990 he has been a Professor at the University of Perugia. Italy where he is presently the Director of the Computer Center. His
research activities has been concerned mainly with the analysis and design of microwave and millimeter-wave passive circuits. He
has contributed to the planar circuit approach for the analysis of microstrip circuits and to the development of numerical techniques
for the modeling of components in planar and quasi-planar configurations. Dr. Sorrentino is a Fellow of IEEE. He is a member of the
editorial boards of IEEK Trans. on MTI, the Int. J. on Numerical Modeling and the Int. J. of Microwave and MM-wave Computer
Aided Engineering.

Rolph EL JANSEN received the M.S. (1972) and the Ph. D. from the University of Aachen (RWTH). He continued his research
work at the RWTH Aachen microwave laboratory as a Senior Research Engineer (1976-79), and since 1977 he worked for about 8
years as a research associate in radio communications for Standard Elektrik Lorenz AG (SEL) in Pforzheim, West Germany. In 1979,
he became Professor of Electrical Engineering at the University of Duisburg, West Germany, with teaching and research on
electromagnetic theory, microwave techniques and CAD, measurement techniques, and modelling. He is author and co-author of
about 90 technical papers in the field of microwave CAD and related topics and recipient of the outstanding publications award in
1979 of the German Society of Radio Engineers.
Since the end of 1984 till early 1992, he was engaged in the development of a novel engineering CAD workstation for GaAs MMICs
with Plessey Research Caswell, U.K. Since 1985 he is owner and president of a small microwave company, named Jansen
Microwave at Ratingen, Germany. He served as the West Germany MIT Chapter Chairman June 1985 to May 1987 and as one of
the Distinguished Iacturen of the MWIT -Society in 1987-88. Also, he is an elected member of MIT-S AdCom since 1989 and Co-
Chairman of the MIT-S Transnational Committee. Further he is a Fellow of the IEEE since 1989 and a member of the
Electromagnetic Academy of the MIT, BostonUSA. In 1992, he co-initiated and chaired GaAs '92 at Noordwijk, The Nedeflands,

( the first European Gallium Arsenide Applications Symposium.



f TOPICS

Microwave circuit modelling using the Transaission Une Matrix (TLM) method. In TLM the space is
subdivided into cells. The electromagnetic field dynamics is modeled by wave pulses propagating between
adjacent cells and scattered within the cells. The main advantage of the TLM simulation resides in the
capability to model circuits of arbitrary geometry and to compute and display the time evolution of the fields.
The TLM method exhibits an excellent numerical stability and is also suitable for modelling of lossy,
dispersive and nonlinear media. A field theoretical foundation of the TLM method is given using the Method
of Moments with sectional base functions. The space discretization with regular meshes as well as with
nonuniform and curved meshes and the error introduced by the mesh discretization are discussed. The
modelling of lossy, dispersive, nonlinear, and active regions as well as the skin effect and absorbing boundary
conditions are treated. Emphasis is put on numerous practical examples of the calculation of microwave circuit
structures including:

Planar, coplanar and slot lines/Planar line discontinuities/Planar tapers/Planar filters/Planar hybrid
rings/Skin effect in planar circuits/Superconducting planar circuits/Nonlinear and active circuits.

In addition to the presentations practical demonstrations of TLM calculations on the computer are given.

Finite Element Method applied to the analysis of 2D and 3D microwave structures.
1. Finite element method.
- Formulation (E and H formulation)
- Meshing

2. Applications and results concerning 2D and 3D microwave structures
3. Software utilization by participants

MESFET and HEMT modelling for CAD. For the modelling of microwave circuit using MESFETS and/or
HEMTs, the linear performance of the active device is of primary importance. For some applications, the use
of a FET numerical modelling can be a good alternative to the use of experimental data files. After a short
description of the different FET modelling techniques, the quasi two dimensional (Q2D) approach, well suited
for the CAD of microwave circuits, will be described in detail. Based on the Q2D approach the software
"HELENA" will be then presented and several examples of applications will be given.

Full wave analysis of microwave and mm-wave structures using 3D mode matching techniques.
Formulation of the mode matching method for isolated waveguide junctions. The Generalized Scattering
Matrix and the Generalized Admittance Matrix. Application to planar and quasi planar circuits. The
Transverse Resonance Method. Segmentation techniques. 3D Mode Matching Method. Full wave optimization
of microwave components.

Advanced linear and non linear modelling techniques in the framework of a commercial
microwavelmmw CAD package. This lecture provides detailed information and theoretical background on
one of the most comprehensive European CAD solutions for layout-and-process-related microwave and
millimeterwave integrated circuit design. Many portions of this CAD package are based on first principles and
reflect well the enormous progress made in the respective design techniques since about mid of the 70s. The
lecture is grouped into 4 sub-topics, namely:
- General framework and hierarchical model library for microwave CAD in layout and physics-related form
- Field-theory bases look-up table generation, direct 2D electromagnetic analysis and piecewise 2D
representation of geometrically complex (M)MIC components.
- High speed full wave 3D electromagnetic analysis and S-parameter generation for microstrip type and
coplanar waveguide (M)MIC conductor geometries
- Active device modeling, parameter extraction and simulation and associated harmonic balance based circuit
de-sien.



* International Journal of
Numerical Modelling,
Electronic Networks,
Devices and Fields
MANAGING EDITOR EDITOR, EUROPE
W.J.R Hoefer, University of Ottawa, Canada B. Tuck, University of Nottingham, UK

AIMS AND SCOPE
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of
the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly.
Engineers need models which relate to their design area and which are adaptable to new design concepts. They
also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their
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Wave-Oriented Processing of Scattering Data

Leopold B. Felsen and Lawrence Carin
Department of Electrical Engineering

Polytechnic University
Brooklyn, NY 11201

Abstract - Windowed transforms applied to scattering data gathered along an elevated track

parallel to a scattering surface are shown to provide local plane wave spectra which can be

backpropagated to synthesize distinct features of the scattering environment. The method is

illustrated for plane wave scattering from a truncated array of pitched strips.

Present and emerging technologies for microwave signal generation and detection, over

wide bandwidths and with short-pulse resolution, have substantially enlarged the data base

available for missions pertaining to scattering from targets, terrain and other complex

environments. A principal task is the extraction of information about the scattering environment

from the data. Modern signal processing techniques, despite their sophistication, generally do

not utilize the "wave history" of the signal as influenced by the environment during its travel

from source to receiver. It is proposed here that wave-oriented data processing, which

incorporates wave content into the basis functions selected for analyzing the received signal, can

motivate processing strategies linked with "good physics," thereby providing a parametrization

for forward and backpropagation algorithms matched to phenomenology. Since the basis

functions depend on configurational (space-time) as well as spectral (wavenumber-frequency)

variables, the setting is in appropriate subdomains of the eight-dimensional

configuration-spectrum phase space.

For implementation, it is suggested to assemble a catalog of scattering signatures that

highlight specific scattering processes. Given data from a scattering experiment could then be

projected onto the phase space subdomain relevant for comparison with the catalog signatures.

For illustration, we consider oblique plane wave scattering from environments which are
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suspected to have quasi-periodic background over an extended or truncated interval. Examples

are the surface of the ocean, the flat corrugated roof of a building, a furrowed field, etc. Data

is gathered on a track parallel to the scattering surface and perpendicular to the striations. The

suspected features may be invisible from the platform (shielded by clouds, for example) but

accessible to the radar signal.

For the catalog prototype, we choose a finite array of perfectly reflecting strips as shown

in Fig. 1. Elsewhere r 1,2], we have presented (and validated against a moment-method numerical

reference solution) a rigorously based hybrid ray - (Floquet mode) algorithm that parametrizes

the scattering in terms of truncated Floquet modes (FM) from the bulk of the array and

FM-modulated edge diffractions from the truncations. The two-dimensional numerically

determined scattered field u(x; y.) along the horizontal x-track at a near zone height y. = IX,

as shown in the bottom of Fig. 2, represents the given data base (X = operating wavelength). To

extract wave phenomenology, this data is subjected to a windowed Fourier transform, with

respect to x, in the (x, k.; yJ) phase space subdomain, where k. is the wavenumber corresponding

to x. This yields the local spectrum u(k,(x);y.) (grey-scale plot of Fig. 2) which specifies the

local plane wave strength and direction at each sampled point (x; y,). The (x, kJ windowed

transform is the syatial analog of the time-frequency transform of signal processing [3]. One

notes a) five tracks extended over x with constant k.. which describe m-indexed truncated

collimated beams, and b) two tracks extended over x with variable k. which describe spatially

spreading waves. (The conventional global Fourier transform (left-hand plot in Fig. 2) has

spectral peaks at k, and at kXm,'2n (grazing angles), but no x resolution). The local plane wave

(i.e., ray) spectra can be backpropagated to the scattering surface along the directions

e=sin-'(k,2 X/2n) to identify there the local regions (x.,0) responsible for establishing the observed

field at (x; y.). This procedure is found to yield for each backpropagated track in b) a

convergence onto two scattering centers _x, and x, and for each track in a) an interval between
a and • intercepted by the 0,-inclined parallel beam. Since constant k,= implies linear phase

progression exp(ik,,,) along x, each contribution in a) synthesizes a distinct linearly phased

truncated aperture distribution, whereas each contribution in b) synthesizes cylindrical waves
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emanating from the endpoints & and x, of the active region on the y = 0 plane. These features

match the hybrid ray-FM scattering model introduced in [1,2] for the truncated periodic array,

since the k.,, phasings of the various beams are found to be consistent with the FM dispersion

relation, for the infinite array, at the specified values of 0, X. and d. Thus, the windowed (x, k1)

transform extracts, directly from the data, the diffraction phenomenology that had been invoked

to parametrize (i.e., provide the wave-oriented basis functions for) the forward scattering

problem in [1,2].

At greater observation heights, for example, y. = 100 X, the (x, kj plot takes on the form

shown in Fig. 3. The FM beams no longer overlap completely as in Fig. 2 but their x-projected

width is still approximately equal to the width of the truncated array. Upon backpropagation, each

beam. still converges onto the aperture region but with poorer resolution than before. Similar

considerations apply to the cylindrically spreading edge contributions. Having sorted out

phenomenology via the windowed Fourier transform, resolution can be selectively enhanced by

other processing (e.g. multiresolution) algorithms [4-7]. When the periodicity is randomly

perturbed, the (x, k) signature becomes fuzzier (Fig. 4) but still reveals the underlying truncated

periodic array background. Other scenarios, like backscatter over various frequencies, can be

analyzed by the same general scheme, as can other scattering phenomena for enlarging the

catalog. For time domain applications see [7].
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Figure Captions

Figure 1. Finite array of forty perfectly conducting strips for which scattering data is computed.

Parameters: w=k d=3k s=2.366k a=30*, 0e=45*, X--wavelength.

Figure 2. Scattered field along horizontal x-track at IA. above grating (bottom), global Fourier

transform (F1) of bottom curve (left), and windowed FT with Gaussian window function having

standard deviation o=4.5X (center).

Figure 3. As in Fig. 2, observed 1OX above the grating.

Figure 4. As in Fig. 2, except the period d in Fig. 1 is selected using a Gaussian random number

generator with a mean dAvU=3 k and a standard deviation q,-=0.03..
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Dispersive Modes In the Time Domain:
Analysis and Time-Frequency Representation

L. Carin, L.B. Felsen, D. Kralj, S.U. Pillai, and W.C. Lee

Department of Electrical Engineering
Polytechnic University
Six MetroTech Center
Brooklyn, NY 11201

Abstract- Four algorithms for time-frequency (TF) distributions are considered for the processing

and interpretation of dispersive time-domain (TD) data: the short-time Fourier transform,

frequency and time domain wavelets, and a new ARMA-based representation. The TF resolutions

of the various distributions are discussed and compared with reference to results for the scattered

fields from a chirped finite grating excited by a pulsed plane wave. The processing in the TF

phase space extracts TD phenomenology, in particular the instantaneous dispersion relation --

with its associated time-dependent frequencies -- descriptive of the local TD Floquet modes on

the chirped truncated grating.

With the trend toward wideband (WB) transient waveforms, it is important to understand

highly dispersive structure-induced wave phenomena directly in the time domain (TD) because

the frequency-dependent scattering angles of the WB waveforms vary drastically over the

bandwidth. Examples are provided by leaky modes (LM) on layered configurations [1,2] and by

Floquet modes (FM) excited by gratings [3,4]. In a comprehensive study based on the high

L



frequency asymptotic behavior of rigorously formulated TD scattered fields, we have identified

novel TD LM and FM which, although relating specifically to the layered [1,2] and grating [3,4]

configurations, describe TD phenomena due to structure-induced dispersion in general. The

asymptotics, due to inherent localization [5,6], parametrize the wave physics in terms of compact

wave objects which can be forward and backward propagated for wave-oriented data processing

in the (space-time)-(wavenumber-frequency) phase space (for space-wavenumber processing, see

[7]); the accuracy of the algorithms have been verified in [1-4].

In this letter, we concentrate on the TD characteristics of FM observed at a fixed location

as a function of time. The scattered TD signal is synthesized by inverting a frequency-domain

FM Fourier integral asymptotically [3,4], and yields a result parametrized by one or more time-

dependent frequencies localized around stationary points. Because the FM are dispersive, the

instantaneous frequencies place time-dependent constraints on the modal wavenumbers through

the FM dispersion relation. Thus, a TD dispersive mode is a wavetrain with varying oscillation

frequency dictated by its instantaneous dispersion, inside an envelope weighted by the frequency

spectrum of the input pulse [3,4]. Specifically, we consider an N-element weakly aperiodic

grating of wires parallel to the y axis on the z=O plane and located along the x axis at points x.,

for n=O, 1, 2, ..., N-1. For weak departure from strict periodicity, we have shown [4] that, by

introducing the function x(v) through the replacement of the discrete index n by the continuous

variable v (n ---v), we can define a local period d(v)=dx(v)/dvax'(v) in the vicinity of x(v). We

have also shown that the instantaneous freouency associated with a m'O TD-FM excited by a

normally incident plane wave is [4]
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%(xZ,0-, d,(t)=x'(v-- (t)], m=±1,±2,... (1)

Here, "=ct with c the speed of light in vacuum, m tags the various FM that propagate away from

the grating, and x[v,(t)] identifies the localized region on the grating aperture from where the

rays of the mth FM, which reach the observer at (xz) at time t, originate. The instantaneous

dispersion relation [4] sine*(t)=mX,(t)/d,(t) (X=wavelength) reveals that all mO FM travel to

the observer at the same time-dependent angle 0,(t)=sin'[1-(z/l) 2]'. This allows synthesis of

highly resolved short-pulse (SP) scatterings from the collection of individual wires by

superposition, at each instant of time, of the various interfering TD-FM wavetrains with their

distinct frequencies given by (1). The analysis above has been generalized to the case of an

obliquely incident pulsed plane wave [8]; the wave physics in that case is similar to that for

normal incidence but with an escalation in algebraic complexity.

A useful way to display the role of time-dependent localized frequencies in scattering data

is via time-frequency (TF) phase-space representations, as examined recently by several authors.

Attention has been given to the Wigner transform [9], the short-time Fourier transform (STFT)

[9-11], and a frequency-domain wavelet transform [10,11]. Here we look at the time-dependent

frequencies and instantaneous dispersion relations by comparing four different TF processing

schemes for a grating example, which comprises 20 (N=20) wire elements at xa=do(n+n 2ca12); the

aperiodicity parameter is a=.0025, corresponding to a maximum variation of nearly 5% in the

local period over the extent of the aperiodic grating.
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For the problem conditions listed in its caption, Fig. 1 exhibits results for the TD scattered

field (bottom plot), for its conventional global frequency spectrum (left-side plot), and for its

instantaneous spectrum obtained via STFT with a Gaussian window having a standard deviation

o=0.602T (center plot). Also shown is the scattered field for the same finite unchirped grating

(a=O). One observes that even a weak chirp may introduce significant departures from the

periodic case. The results demonstrate nicely how the STFT parametrizes the data in terms of

instantaneous physical wave processes that are hidden completely in the global FT. One discerns

two distinct TF signatures: those with short time duration, broad instantaneous bandwidth and

negligible dispersion (vertical bands) at the beginning and the end, and those with long time

duration, narrow instantaneous bandwidth and strong dispersion (curved bands). The former

represent SP wavefronts which sweep past the observer during a time interval equal to the pulse

duration whereas the latter represent sustained oscillatory waves associated with TD-FM [3].

Scattering is seen to occur only over a finite time interval, implying a scatterer of finite extent,

with weak body resonances. Taken together, the STFT features characterize clearly the scattering

from a finite aperture whose scattering-induced equivalent excitation is the superposition of

several distinct dispersive wavefields; the initial and final nondispersive pulsed events are due

to diffraction at the truncations and (or) due to a nondispersive degenerate mode. This

interpretation, inferred directly from the STFT, is in complete accord with the analytic model [4].

The STET, which sorts out the basic physics, has constant TF resolution. To home in

better on the modal dispersion relation (in our case the TF curve from (1)), we consider variable-

width windowing via two versions of the wavelet transform. The first, implemented in the
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frequency domain (FD), was developed by Ling and Kim [10,11] and is essentially a variable

window STFT. The FD wavelet (in our case, a modulated Gaussian) is described in the caption

of Fig. 2. Compared with the STFT (Fig. 1), the results in Fig. 2 do show narrowed definition

of the instantaneous dispersion bands. However, this wavelet transform is known to require data

for which the early and late time response are discernable clearly. In Fig. 3 the TD transform

using the Morlet "mother wavelet" [131 also implements the high (poor) temporal-poor (high)

frequency resolution tradeoff but without the restrictive a priori discrimination between early and

late times. Since the TD wavelet transform gathers low and high frequency information by using

wide and narrow time windows, respectively, the temporal resolution at low frequencies is poor

(see the early-time nondispersive return) but improves at higher frequencies with correspondingly

poorer frequency resolution (note that the vertical spread of the modal TF bands is wider at

higher frequencies). The final TF processing scheme is based on a newly developed Auto-

Regressive Moving Average (ARMA) algorithm [14] that guarantees stable spectral pole (and

residue) extraction within a sliding TD Gaussian window (as was used in the STFT). The poles,

weighted by their respective residues, yield the TF tracks in Fig. 4, which are seen tu coincide

closely with the instantaneous frequencies predicted in (1). The dispersion curves of the m=1, 2,

and 3 TDFM modes are predicted very accurately with the ARMA scheme, while the predicted

m=4 curve is slightly lower than that given by (1). This may be attributed to weak excitation of

the m=4 mide since its time-dependent frequencies are at the upper edges of the frequency

spectrum (s,:; Fig. 1). An additional advantage of the ARMA scheme is its excellent stability

even in the presence of noise.

(-

,, ll/ i li aiVH ilI lI



In conclusion, we have processed numerical scattering data for a chirped truncated grating

excited by a pulsed plane wave to demonstrate extraction of information pertaining to TD

dispersive phenomenology. Four different TF processings have been presented and compared. The

STFT, which is least beset by artifacts, provides a good first cut at the phenomenology of TD

wave objects in the TE phase space. The wavelet transforms selectively resolve the STFT bands

around the dispersion curves tracing out instantaneous frequencies. For the example here, the

windowed-ARMA scheme provides the best TF resolution.
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Figure Captions

Figure 1. Scattering data and processing (see text) for a 20 (N=20) element grating of thin wires

parallel to the y axis at z=O and located along the x-axis at x.=do(n+n 2o./2) for n=O, 1, 2,..., N-i;

the aperiodicity parameter is a=.0025. The normally incident pulsed plane wave is described by

a Raleigh wavelet [2,3,12] with center wavelength k.=d./2, and the scattered field is observed at

a distance of 20.c directly above the right-most wire. Time is normalized to T=d,/c, where c is

the speed of light in vacuum. The TD scattered field and the global frequency spectrum for the

same finite unchirped grating (a=0) are shown dashed.

Figure 2. FD wavelet transform [10,11] of scattering data in Fig. 1 from aperiodic grating. The

FD wavelet is adjusted such that in the early time the STFT Gaussian window is narrow and

provides high temporal resolution; as the window is moved to the late time, it widens and

provides good frequency (poor temporal) resolution. The standard deviation of the Gaussian

window is a=0.481T at 9.872T and grows to 1.333T at the end of TD waveform.

Figure 3. Time domain Morlet [13] wavelet transform of scattering data in Fig. 1 corresponding

to the aperiodic finite grating. The wavelet has 2.5 periods of a sine wave within the 3db point

of the Gaussian envelope; the Gaussian envelope has a standard deviation of 0=2.15T at

frequency 0.69fT and a standard deviation of o=0.32T at frequency 5.67tT.
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Figure 4. ARMA processing of scattering data in Fig. 1 corresponding to the aperiodic finite

grating. ARMA processing is performed to extract resonant frequencies and their residues over

windowed portions of the time-domain data. A sliding Gaussian window is used as in Fig. 1, with

a standard deviation of a=0.602T. For each window position, the poles associated with models

ARMA(8,1) through ARMA(12,12) are calculated along with their residues. Each dot in this

figure represents a pole from one of the ARMA models and its intensity is indicated by the grey

scale. The curves represent the time-dependent dispersion curves of the TDFM as given by (1).
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Comparison of Different Field Theoretical Methods of Analysis of

Distributed Microwave Circuit Elements

Roberto Sorrentino,
Mauro Mongiardo, Luca Roselli, Paolo Mezzanotte and Ferdinando Alessandri

Istituto di Electronica, University of Perugia, 1-06100, Perugia, Italy
Fax +39-75-5852658

Abstract
Mode matching method and Finite Difference Time Domain method are taken as
representative field-theoretical methods for the modelling of microwave circuits.
MM represents analytically oriented (or integral) frequency domain methods,
while FDTD represents numerically oriented (or differential) time domain
methods. A number of test ceces have been run on an IBM RISC 365 workstation
to compare the accuracy and efficiency of both methods.

1. Introduction
Numerical methods for the analysis of microwave structures belong

basically to two categories corresponding to the numerical formulation of
Maxwell's equations in differential or integral form. Strictly numerical methods,
on the one hand, are based on the discretization of Maxwell's equations, (e.g.
Finite Element, Finite Difference (in frequency or time domain)) or on the
implementation of Huygen's principle (Transmission Line Matrix (TLM)
method). Thanks to their high flexibility, they are well suited for problems with
irregular geometries. On the other hand, methods requiring a high degree of
mathematical preprocessing, such as Spectral Domain Approach (SDA) and Mode
Matching (MM) method, are based on a continuous rather than discrete
representation of the field quantities. They lead to very efficient computer codes,
but are limited to problems with simple geometries.

Another important categorization of numerical methods concerns the use
of frequency or time domains. Dramatic advances in computing resources have
recently made it possible the practical implementation of time domain
techniques for the simulation and even the optimization of microwave circuits.
Not may years ago, because of their huge memory and CPU requirements,
methods such as Transmission Line Matrix (TLM) and Finite Difference Time
Domain (FDTD) were considered essentially as academic exercises. Instead, we are
now facing an era where such techniques are becoming increasingly popular and
of practical utility.

While differential methods have been used both in frequency and time
domains, integral methods have been used in practice only in frequency domain.
This paper is an attempt to make a comparison between two very popular
numerical methods, FDTD and Mode Matching (MM) illustrating the respective
advantages and disadvantages. Such methods are typical representatives of
frequency and time domain techniques, on the one hand, and of differential and
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integral methods on the other hand. The aim is to help the researcher to make a
sound choice of the technique most appropriate for the problem at hand.

The comparison will be unavoidably biased by the personal views and
specific experience of the authors. Additional and more extensive investigations
are needed. We nevertheless hope the results presented here, although partial
and preliminary, have some degree of general validity.

2. Classification of Field Theoretical Methods
The electromagnetic (EM) modeling of microwave circuits can be viewed

as a process consisting of the following steps (Fig.1):

- Description of the problem (geometry, electrical parameters, etc.) (INPUT)
- Excitation of the structure
- Computation of the EM field in the structure by solution of Maxwell's equations
- Extraction of terminal parameters (e.g. S-parameters) (OUTPUT)

Our attention here focuses on the third step, i.e. the solution of Maxwell's
equations. The Maxwell's equation solver can operate either in time domain
(TD) or frequency domain(FD). Correspondingly, adopting Miller's point of view
[1], it can be defined as a

- field propagator: time-domain solver, where the initial value boundary
value problem is updated in time;

- field solver: frequency domain solver requiring matrix iiverion or
system solution

PROBLEM DESCRIPTION
lelectrical, geometricalparameters)

Field solver EM Fields
or

INPUTr Field propagator • PARAMETER OUTPUT
excdtateonos) EXTRACTION TerminalSderived from description

MXWELL'S

EQUATION

Fig. 1 The direct problem

The inverse or synthesis problem (Fig. 2) consists of finding (some)
geometrical parameters that give a desired output (terminal description) from a
specified input. The synthesis is usually performed in FD using proper iterative
algorithms. Essentially the synthesis results from a large number (100-1000) of
repeated analyses according to some search strategy. Attempts to synthesize
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microwave structures directly in TD, however, have been reported recently using
a time reversal technique [21 or a hybrid frequency/time domain [3].

Problem description

(electrical, geometrical parameters)

Field solver
I NPUT or
excitation(s)

Field Propagator

E M
Fields

PARAMETER
EXTRACTION

= SPECIFIED NO CHANGENO•GEOMETRY

END

Fig. 2. The synthesis (inverse) problem

A variety of numerical techniques can be employed for building up a field solver
or propagator. Among the most common are the following:

Integral Equation (IE) techniques, including the Spectral Domain
Approach (SDA)

Mode Matching (MM) Method
Finite Element and Boundary Element Methods (FEM, BEM)
Finite Difference (FD) Method
TLM Method (and Spatial Network Method, SNM)

Frequency Domain Time Domain
Differencial Method FD FDTD

FDTLM TLM
FEM

Integral Method MM
SDA
EFIE, MPIE

Tab. I Classification of Numerical Methods



4

These techniques can operate in frequency or time domains (Tab. I). It is
interesting to note that some techniques originally developed and typically
operating in one domain are currently being transferred into the complementary
domain (e.g. FDTLM [4]. Also, the Finite Element Method, conventionally
applied in frequency domain, can be implemented in time domain). Integral
methods in Time Domain have not been implemented for microwave circuit
modelling, except in connection with wave scattering [5].

Step Activity MM FDTD
Formulation Translating the Apply apr opriate seg- Adoption of Yee's

elementary description mentation Ise appro- algorithm, the appropriate
into a complete priate bases for field graded mesh, ABC, etc.

mathematical representations. Simple, broadly applic-
representation (Green's functions). This able in dte basic formul-

step requires educated ation. More elaborate for
people and has to be higher performances (edge
adiusted each tme. condition, graded mesh)

Numerical Transforming into a A new code must be Relatively easy. The code
Implementation computer algorithm using assembled each time is problem independent

various numerical (problem dependent).
techniques Some building blocks can

be re-used
Computation Obtaining quantitative Fast Lengthy

results
Validation Determining the A new validation is Since the code is problem

numerical and physical required for any new independent it must not
credibility of the problem, but computation be validated each time;
computed results is not time consuming but running computation

(experimental results is time consuming
generally available in

frequency domain)

Tab.1I. Steps in developing a computer model with MM and FDTD

This paper is not intended to provide a comparative analysis of all numerical
methods, but rather to focus our attention to two of the most consolidated and
representative methods, such as FDTD and MM methods. Such methods
represent, on the one hand, methods operating in time and frequency domains.
On the other hand, they also represent the two categories of differential methods
or numerically oriented methods (based on discretized space representation) and
integral or analytically oriented methods (using continuous space
representation)I. Most of the conclusions drawn here in connection with FDTD
and MM can be extended to other methods such as TLM and SDA.

lit must be noted that we refer here to a generalized Mode Matching technique that includes a 3D

formulation. Accordingly, MM consists of the segmentation of a 3D structure into simple volume
elements (boxes) where the EM fields are expanded in terms of modal series or in terms of Green's
function. At the apertures connecting contiguous boxes, the tangential fields are expanded into
suitable 2D basis functions (usually waveguide modes). The boundary conditions at the apertures are
manipulated so as to obtain a linear system of equations in the expansion coefficient of the 2D series.
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U

Attribute Definition MM FDTD
Accuracy The quantitative degree to The accuracy attained is The accuracy attained is

which the computed quantified by using some quantified by using some
results conform to the convergence test. The cost convergence test. The cost
mathematical and physical (simulation time) of (simulation time) of
reality being modeled; performing this step is performing this step is
accuracy, preferably of considerably less than considerably higher than
known and, better, yet, with FDTD with MM
selectable, value is the
most important model
attribute

Efficiency The relative cost of A user front-end which User front ends are under
obtaining the needed allows an easy input of development and are very
results; determined by the the data as well as an easy encouraging. The easy
human effort required to intepretation of the output access to the fields helps
develop the computer has not been realized yet. to develop a basic
input and interpret the This is partially due to understanding of what is
output, and by associated the lack of generality of going on.
computer cost of running MM codes. The cost of running the
the model The cost of running the model is quite high.

model is generally less
than for FDTD

Utility and flexibility The applicability of the The code is usually The code is applicable to
computer model in terms strictly problem- almost any geometry.
of problem size and dependent. As such, using With proper modifications
complexity; utility also the code for a slightly can also be used in
relates to ease of use, different application is conjunction with non
reliability of results almost impossible. linear solvers.
obtained, etc. Problem size and The complexity and

complexity are rather problem size are strictly
large since the method use related to the computer
as unknowns the fields on performances. At the
surfaces and not on moment even the analysis
volumes. Reliability is of small regions can
also excellent. exceeds normal

workstation capability.
Reliability tests can be
very expensive.

Tab. III. Attributes of computer codes based on MM and FDTD

2. Terms of Comparison
It is widely recognized that FDTD has the advantage of high versatility and
easiness of implementation but has poor numerical efficiency compared to MM.
The latter is numerically efficient, but has limited versatility and requires more
analytical work to be implemented.
We try now to establish a comparison between the two methods on a more
quantitative basis using the following criteria:

a. A "conceptual" approach based on the analysis of the methodology
b. Accuracy of the computed results:

- source of errors
- convergence of the solution
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c. Computation time
d. Memory requirements

3. Analysis of methodologies
We use here with slight modifications Miller's point [1 to analyze both MM and
FDTD methodologies in the process of developing a computer code for the
analysis of 3D structures.
Tab. II synthesizes the main steps required in this process. Specific comments,
added to both methods, illustrate the respective advantages and disadvantages.
Based again on Miller's paper, Tab. III. identifies the desirable attributes of a
computer code and tries to specify in what measure they are possessed by MM
and FDTD.

4 Accuracy of the computed results
Error sources in MM are essentially due to two types of approximations. One is
the truncation error in the computation of the Green's function in the volume,
the other is the truncation error in the field representation on the apertures
connecting adjacent volume elements. Both errors can be viewed as due to the
limited spatial resolution of the two field representations. It is interesting to
observe that, in many cases, because of the variational properties of the MM
formulation, the two errors tend to compensate. As a consequence, even with a
modest approximation of the field distributions, very accurate results can be
obtained by a proper choice of the two truncations 16].

The application of MM method to structures with non canonical
boundaries (e.g. curved boundaries in rectangular coordinated, etc.) involves
additional errors due to boundary approximation.

Errm source Descroton Counenesue
Green's function Series truncation in the field Asimptotic evaluations
approximation representation in the volume
Aperture field Series truncation in the field Incorporation of edge conditions
approximation representation on the apertures
Non confornal boundaries Boundaries are approximated by Use different segmentation. Use

staircase approximation confornal coordinates

Tab. IV. Error sources in MM

Other error sources associated with typical numerical procedures, such as the
numerical solution of linear systems, are of standard nature and have a relative
negligible impact.
Some of the most common error sources in FDTD are listed and described in Tab.
V. Possible countermeasures to decrease the associated errors are also suggested.
In both MM and FDTD error decreases with increasing spatial resolution.
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For a quantitative comparison of both methods in terms of accuracy vs. efficiency
we have performed a number of numerical experiments performed on an IBM
RISC 6000 -365.

Emror soure Descrioon Countermeasures
Spatial discretization Coarseness of the spatial mesh Increase spatial resolution
Spatial quantization Geometrical dimensions not Gaded mesh

fitled by the mesh II
Time record truncation Truncation of the time iteration Add more iterations. Use

affects Fourier transform spectrum estimation techniques
Sevaluation I _I

Non conformal contours Contours are staircase Use a conformal coordinate
approximated system

Tab. V. Error sources in FDTD

A square TEM line has been chosen as a test case.
Results of FDTD computations of the characteristic impedance for different space
resolutions are shown in Fig. 3a. The relative error has been evaluated with
reference to an extrapolated value for Zo. In the present case, for a spatial
resolution decreasing by a factor of 10 (from 1mm down to 0.1 mm) the error
decreases by a factor 14 (from 0.7% down to about 0.05%), while the computation
time increases by a factor of 634 (from 7s to 4440s).
The same problem has been solved by MM method (in this case the method can
also be referred to as Field Matching method). Computed results are shown in
Fig. 4a. The spatial resolution here is defined as one half of the smallest spatial
wavelength. When the spatial resolution is increased to 0.3mm, the error
becomes negligible. On the opposite, when the spatial resolution is 3.3 mm, the
CPU time becomes negligible. It is also observed that the convergence of the MM
solution is not as smooth as that of FDTD.
Another test case is illustrated in Figs. 3b, 4b. The center conductor of the line has
been replaced by a metal strip. The higher field singularity produces an increase
of the coarseness error that can be observed in both methods.
The results of Figs. 3 and 4 show that MM is extremely more efficient than FDTD.
This iE due also to the choice of the geometries considered that are perfectly
suited for MM. On the other hand, even simple modifications of the geometries
require a new MM code to be set up, while the same FDTD code can be used in all
cases.
Quantization error is a typical phenomenon occurring when using space
discretization. This type of error and the effect of using graded meshes are
illustrated in Fig. 5. A square coaxial line with sizes a=10.25 mm and a'=4.25 mm
is considered. Fig. 5a shows the results of FDTD analyses when the mesh does not
fit with the metal boundaries (mesh size=0.5mm). In such a case the sizes of the
line must be adjusted by ±A in order to fit the mesh. The computed data exhibit
an error varying from 4.26 to 11.90 %. For the same mesh size, the error in Fig. 3
was only 0.37%. To reduce the error one can reduce the mesh size or introduce a
variable mesh. The first option involves additional memory storage and CPU
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requirements. Fig. 5b shows that the use of a simple graded mesh to fit the metal
boundaries reduces the error again down to 0.37%.
A finer mesh is useful to reduce the discretization error by better resolving the
field distribution. It is essential however that the mesh refinement be properly
located. Fig. 5c shows that a mesh refinement in the center of the structure does
not have any significant effect (err=0.44%). On the contrary, a denser mesh at the
corners reduces the error almost to zero (Fig. 5d).

5. A 3D MMIC discontinuity
As a final example we have analyzed both by MM and FDTD a via hole ground in
a packaged microstrip line. Fig. 6a shows the segmentation adopted for
implementing the MM analysis. Fig. 6b shows the model adopted with the FDTD
simulator. Fig. 6c shows the computed behaviors of the via compared with our
measurements. A good agreement is observed between theories and experiment.
In particular both theories predict the effect of package resonances.

Nx Ny * Nz mesh dimension CPU time mS per At CPU time mS per At
DEC 12000 RISC 6000.375

65 *65 *I1MO 422500 110 O0

64 64 *100 409600 630 3950
10*10*100 10000 480 - 80

51 *55* 105 294525 650 -

Table Vl. CPU time per At versus mesh size.

Tab. VI describes the discretization used in FDTD. To run the FDTD code in a
reasonable amount of time (hours), it has been necessary to use the DEC 12000
Massive Parallel computer of Ferdinand Braun Institute (FBH).
The MM code was again extremely faster. One analysis required about 5 minutes
per frequency point on the IBM RISC 6000 workstation. The MM analysis
involves the solution of a system of equation of the order of less than 500
variables, corresponding to the number of modes used in the field expansions.
It must be observed, however, that the presence of the transitions could be taken
into account only with the FDTD code. In addition, the latter could be used to
modify the the shape of the microstrip package and to introduce samples of
damping materials to choke the resonances off. With the MM code, only the
parameters of the rectangular subregions can be changed. Any variation in the
shape of the regions would require a new code to be built up.

6
Mode matching method and Finite Difference Time Domain method have been
taken as representative field-theoretical methods for the modelling of microwave
circuits. MM represents analytically oriented (or integral) frequency domain
methods, while FDTD represents numerically oriented (or differential) time
domain methods. A number of test cases have been run on an IBM RISC 365
workstation to compare the accuracy, efficiency and versatility of both methods..
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The MM code was shown to be extremely faster than the FDTD code. The latter
however have extremely higher flexibility to model structures with various and
different shapes, such as microstrip interconnections.
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Time Domain Electromagnetic Field Computation
V with Finite Difference Methods
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ABSTRACT

The solution of Maxwell's equations in time domain is now being used since almost three decades and has had
great success in many different applications. The main attraction of the time domain approach, originating in
a paper of Yee [1], is its simplicity. It takes only marginal effort to write a computer code for solving a simple
scattering problem compared with conventional frequency domain methods. However, when applying the time
domain approach in a general way to arbitrarily complex problems, many seemingly simple additional problems
add up.

We describe a theoretical framework for solving Maxwell's equations in integral from, resulting in a set
of matrix equations, each of which is the discrete analogon to one of the original Maxwell equations. This
approach is called Finite Integration Theory and was first developed for frequency domain problems starting
about two decades ago. The key point in this formulation is that it can be applied to static, harmonic and time
dependent fields, mainly because it is nothing but a computer-compatible re-formulation of Maxwell's equations
in integral form. When specialized to time domain fields, the method actually contains Yee's algorithm as a
subset. Further additions include lossy materials and fields of moving charges, even including fully relativistic
analysis.

For many practical problems the pure time domain algorithm is not sufficient. For instance a wave guide
transition analysis requires the knowledge of the incoming and outgoing mode patterns for proper excitation in
time domain. This is - typical example where both frequency and time domain analysis are essential and only
the combination yields the successful result.

Typical engineers may wonder why at all one applies time domain analysis to basically monochromatic
field problems. The answer is simple: it is much faster, needs less computer memory, is more general and
typically more accurate. Speed up factors of over 200 have been reached for realistic problems in filter and
wave guide design.

The small core space requirement makes time domain methods applicable on desktop computers using
millions of cells, and six unknowns per cell - a dimension that has not yet been reached by frequency domain
approaches. This enormous amount of mesh cells is absolutely necessary when complex structures or structures
with spatial dimensions of many wavelengths are to be studied. Our personal record so far is a wave guide
problem in which we used 72.000.000 unknowns.

As result of the efficiency of time domain methods it is now possible to move from analysis type of
computations to the wide area of automatic optimization, requiring hundreds of analysis runs for one target.
We present a number of conventional examples from electrical engineering and the forefront reasearch in high
power rf generation to demonstrate that time domain methods are 'better by design' and that there is no pure
frequency domain method around that can reach the same generality and practicability.

INTRODUCTION

The theory (and the related software) of Maxwell's Grid Equations (MGE) was originally de-
veloped for frequency domain applications [2, 3, 4] and later from the need for solving many
different problems including static, low frequency, high frequency and transient fields for de-
signing large scale accelerators [5]. Thus the goal was to solve all of Maxwell's equations rather

1spokesman of the MAFIA collaboration: M.Bartsch, U.Becker, M.Dehler, M.Dohlus, X.Du, S.Gutschling,
P.Hahne, R.Klatt, A.Langstroff, M.Marx, Z.Min, U.van Rienen, D.Schmitt, A.Schulz, B.Steffen, P.Thoma,
B.Wagner, T.Weiland, S.Wipf, H.Wolter



than only a specific subset as one usually is concerned with. The basics of the theory and the

computer codes are so well published that we refer here to the literature (e.g. [6] [7]) and start

directly with writing down the MGE:

Maxwell's Grid-Equations - I (regular coordinate grids)

Integral Form Matrix Representation

IJ J t = Edi: -DAb = D~e

jABdA = 0 DAb = 0

Jf(J)).d = j!id A D 1f) =b

D = d JA/dV bDAD~e = q
D~c d=D, e

iL= D,,e

djej

One cell of the grid G and
the dual grid G. The alloca-

diej tion of the electric field and
dk ek flux components are shown

as well as the allocations of

the corresponding magnetic
quantities.

d, el

This set of matrix equations is a one-to-one translation of Maxwell's equations to a grid

space doublet G - G and represents the only known theory that not oily allows practical
solution on a computer but also maintains all analytical properties of electromagnetic fields
when changing from RB to the grid space.

In this formulation the grids are orthogonal coordinate grids in one of the usual coordinate
systems such as (z - y - z), (x - y), (r - 0 - z), (r - 0), (r - z).

Grid-fields represent not only a large bunch of numbers but also have analytical, algebraic

properties that ensure accurate numerical results and enable an algebraically exact self-testing
of numerical results.

So far this theory is state of the art and the basis for existing computer codes solving

problems in time domain, frequency domain and in statics [8].
In order to avoid the restriction to coordinate grids and to improve the capability of a

grid to approximate curved boundaries, extensions to non-regular grids have been discussed by

many authors in recent years, see for instance [9] [10] [11]. Here we present a generalization
of the normal Maxwell-Grid-Equations to non-coordinate grids having the same properties as
they will be discussed below. One can define a general grid doublet {G - G}:



* The solution volume G is simply connected and contained in R? (or R2 ).

* G is a finite set of non-empty sub-volumes:

V = {Vi ... V,,v}; n Vi = {A.}; U Vi = G

e The non-empty 3xeas Ai are defined as the intersections of two volumes:

A = {Al... A1A},

* Lines Li are defined by the intersection of areas:

L = {Ll...L.,L}

* Points Pi are defined by the intersections of lines:

P = {PV...PP,}.

On such a grid G it is more convienient to use integrated fields as state variables rather than
directly the field components (for convienience we use from here on e no longer as electric
field but as voltage and similarly we proceed with all other field vectors in order to avoid the
introduction of a whole new set of variables).

If we define a grid voltage along a grid line Li and magnetic flux quantity by:

e E j .d ; b=J .dX (1)

we can rewrite the first Maxwell equation on G:

ds _t dA(2)

in exact representation as:
.,c.,kek .9b ()

k at(
So far no approximation and no discretization is applied. The only step from the orginal field
equation to the latter one was to replace field components by their exact integrals along lines
or over areas.

Similarlywe continue with replacing the second Maxwell equation but on G rather than
on G, where G is defined such that each point A1 of G is located somewhere inside Vi of G.
On this dual grid G = we introduce magnetic voltages hi, electric fluxes di and currents
ii as:

hi~f H - .dF ;di=f D -dA ; ii= JA . dA (4)

With these new variables we again can exactly map the original equation:

H H7s= +-)+ ).dA (5)

to a grid equation: i~di
ikhk =- + ii, (6)

k

The third and fourth Maxwell equation is similarly turned into:

Eiikdk = qi ; , Sikbk = O ; with qJ pdV (7)
k k



So far we have mapped all Maxwell equations to a grid space doublet without any spe-
cialization. The final discretization comes into the procedure only now that we have somehow
to relate electric voltages and fluxes, and magnetic voltages and fluxes as well. In the above
derivation the magnetic voltage is one variable and the magnetic flux another independent one.
The relation f must be of the form:

f GO II) - fA iB dA :t l

AL, Hi ds

The matrix DM is now the discrete representation of the permeability. Thus in this derivation
the approximation comes in through the material relations rather than difference expressions
for derivatives.

In general this matrix is not diagonal but sparse with some dialgonals of nonzero elements.
Furthermore D, is symmetric for reciprocal materials. In the case of coordinate grids as well as
for a few other orthogonal grid doublets (such as the one of URMEL-T, see further down) the
discretization of the material equation has a second order accuracy and the material matrices
are true diagonal if the material tensors are diagonal or isotrope.

The same arguments lead to the discrete permittivity and conductivity as (in general not
diagonal) matrices:

d=D~e ; i=D,,e (8)

Summarizing this derivation yields a dual set of equations where the discrete equations corre-
spond one-to-one to analytical ones on any non-regular grid doublet obeying the above defini-
tions.

Maxwell's Grid-Equations - II (iregular grids)

Integral Form Matrix Representation

-B d = -bdCe

BY B.dA = 0 Sb = 0

I (f+ -"D) dA.= j H_ drvi a=45

5,D.dA = J dV Sd = q

D =E d = De
B• H / b =Doh

fL Z iL - D.e

This discrete form of Maxwell's equations is very general and not restricted to regular
coordinate grids. However, most practical implementations do not use iregluar grids as the
coding is by far more complicated as it is already for coordinate grids. However, to show that
such non-coordinate grid doublets do exist we show one example with a 2D (r - z) geometry
where the grid G is made of triangles and the dual grid G of hexagons [11]. In this grid the
material matrices are diagonal for isotrope material.



-r-(,t ý Y k Y Y. A .L.
-r -- rr Yr rr YY Y Y

I rkA A AAAAAAAL

Sr r

'r r~Yy

EY Y

1.5L

- R

- - - - -- - - - - -- - - - - -- - - - - -

These plots show a two dimensional exam pie of a non-regular grid doublet made of a triangluar
and hexagonal set of meshes. The structure is a cylindrically symmetric resonator. The lower
two plots show the electric field of the fundamental resonant mode as vector and field lines.
This results were obtained from URMEL-T [11].



ALGEBRAIC PROPERTIES OF MAXWELL'S GRID EQUATIONS

Although this paper is supposed to deal mainly with time domain solutions, we will
consider here field solutions also in time harmonic form as only the combination of frequency
and time domain methods opens an almost unlimited area of possible applications.

The outstanding feature of Maxwell's Grid Equations (MGE) when compared with other
numerical methods for solving field problems is that this set of matrix equations is a consistent
discrete representation of the original field equations in that sense that basic properdies of
analytical fields are maintained when moving from R3 to {G, 6}.

These properties may be considered useful in two ways. One aspect is that many numerical
problems are a priori eliminated, such as spurious modes and parasitic charges. Furthermore
numerical solution no longer are only a bunch of numbers but vectors with exact algebraic
properties enabling an independent cross check of accuracy.

Another aspect is that the matrix theory can be used instead of the analytical equations
to study properties of fields in an algebraic manner, without actually solving the equations
numerically.

For grid doublets there exists a dual index system such that the point Pi is located inside
Vi and vice versa Pi inside V. All other elements of G, 6 receive an index defined by this
system as well. This numbering scheme ensures that the following key properties hold [6] [12]
[13) [14]:

C = (9)

SC = 0 (10)

Both equations represent a topological property resulting from the duality of the two grids.
The analytical and algebraic properties resulting from these basic equations are [6):

CS = 0 4 curl grad = 0 (11)

SC = 0 - divcurl = 0 (12)

and similarly for the dual grid operators:

CS 0 = -0 curl grad = 0 (13)

SC 0 = -0 divcurl = 0 (14)

As an example for a proof using algebra we consider the (well known) fact, that resonant
fields in loss free structures can have only real eigen frequencies. For the case of MGE it requires
only a few lines to proove this. We rewrite the MGE in frequency domain as:

Ce = -iwb (15)
IbD-1 b = +iwDVe (16)

We combine both equations to:
i5D-1 Ce = w2D~e (17)

We introduce an energy density normalization by

i =D/ 2 e (18)

and finally obtain:

(D- 1/2 C D-1 /2) (D,-l/2 ID l/ 2)t = W2 E (19)



This equation is a simple, algebraic, linear eigenvalue problem with an (obviously) symmetric
Sand real matrix of the form A'A. Thus one knows from algebra that all eigenvalues W2 are real

and positive, q.e.d.
Another property of resonant fields is similarly easy to proove, namely that the average

energy in the magnetic field equals the average energy in the electric field. To show this we
write the MGE equations in frequency domain without sources and for loss free materials:

Ce = -iwb (20)

Ch = +iwd (21)

We multiply the first equation from the left with h~t and the second one with et:

h~tCe = -iwhwtb (22)

e*tth = +iweitd (23)

Transposing the last equation and taking the complex conjugate yields:

hat Ce = -iwhwtb (24)

hat C e = -iwe'td (25)

As 1/4 h'tb is the total magnetic field energy in G and 1/4 e'td the electric energy in G, we
find that both are equal, q.e.d.

The same fact can be shown in a different way. Within the MGE one can show that the
total change of energy within G in the presence of currents is given by [14]:

OW OWe OWm -it (26)%- =+ -= -e"

From this equation it also follows immediately that for i = 0 and time harmonic fields that
W.= W,,,.

The time idependent energy in G resulting from constant potentials and currents is
given by expressions which can easily be identified as the corresponding analytical expressions,
namely:

Ir".,.tatic = 1/2 qto (P Wettic = JV pdV ) (27)

Wm,s.tatic = 1/2ita ( 4-+ Wm,.taic = V A • JdV ) (28)

where
e = StVp (I- E = -gradf) (29)

b = Ca (B 1=curiA) (30)

• is the scalar grid-potential and a is the grid-vector-potential.
Back to time harmonic fields there is another very important property that follows from

the curlcurl equation, written down here without energy normalization as:

CD-'Ce = .' 2I)e (31)

We multiply this equation from the left with S:

§CD-1 Ce = W2Sf 5 (e (32)

As the left hand side vanishes due to SC = 0 we are left with:

0 = §2Sfe (33)



This equation allows only two distinct cases for the solutions { e,d :

- Iw2=O Sd#6Oe,d: w 2  0 Sd=O

As the original eigenvalue problem is real and symmetric we can create a set of orthonormal
eigenmodes e. such that

eej = b0 (34)

Thus the solution space 0 of equation of Equ. 19 is made of two orthogonal sub spaces:

) = flo ED (35)

This relation is in so far essential as one is only interested in solutions of r)" and not in
static fields contained in fo. However, as the eigenvalue problem contains both at a time, this
fact also is responsible for a significant problem: for N grid nodes there are approximately N
zero and 2N nonzero eigenvalues. This almost excludes a numerical approach with iterative
methods as it is almost impossible for large N to compute the N + 1 th eigenvalue and vector.
The solution to this problem is found by transforming the curl-curl equation into a discrete
Helmholtz-like equation in analogy to the analytical step:

curl curl = grad div - V2  (36)

This transition to V2 is not possible in a one-to-one manner as it implies a constant material
property function. Thus a similar transition with MGE will be more general as there is no
restriction to constant material properties. The generalized Helmholtz-Grid-Equation reads as
(6] [131: (CDJ, 1 C + DIStD 2 SD3)e = W2e (37)

where the term DlStD2SD 3 corresponds to the grad-div operator and D1 ,D 2 , D3 are di-
agnoal matrices which can be constructed in such a way that the Helmholtz-Grid-Equation
in homogeneous regions turns into a normal discretization on the V 2 operator. However, this
form is valid for any non constant material distribution. This is one of the rare cases where the
grid equation is more general than the commonly used analytical one.

The solution space n.2 is again a set of two distinct orthogonal sub spaces:

r1y2 = fl, EDR, (38)

where the flu, has not been altered. All static solutions with eigenvalue zero in flo are turned
into eigen solutions of

D1StD2 SD 3 e = w2 e (39)

These eigenmodes are not solution of Maxwell's equations. However, the advantadge of this
transformation is that the eigenvalues of 01, are also positive and real. The disadvantadge
on the other hand is that these solutions are naturally obtained together with Maxwellian
solutions. Historically these solutions have probably observed first by simply discretizing the
wave equation with a conventional 6-star operator and investigating the obtained fields. As
solutions in f, can be often identified by a trained user as non-Maxwellian ones, the were named
ghost modes, spurious modes or simply unphysical solutions. With the exact relations shown
above this contamination can be exactly taken care of within the MGE. Thus the widespread
problem of spurious modes, which are subject to enormous effort in e.g. Finite Element studies,
is simply a non-problem for MGE [2] [3] [4] [6].

More as a side remark for the reader interested in physics beyond Maxwell's equations it
shall be pointed out here that the solutions in A, are not at all unphysical. It is true that they
are not electromagnetic solutions but they are in fact solutions of the Schroedinger equation.



For the case of quasi-two-dimensional problems as they are set by the evaluation of wave
9 guide properties the situation is in fact more complicated than in 3D. Here one can restrict the

discretization to a 2D mesh only and use the ansatz for the z-dependance:

(xy, z + 6z) = 9(x, y, z)e (40)

If one uses as state variable only transverse components of the 3D vectors, one can implement
here (in contrast to the 3D case) a priori the condition divl3 = 0, Sd = 0 and totally remove
any non-Maxwellian solution from the algebraic system [2, 3, 41. The derivation however is to
long to be repeated here and we show only the final equations in the two possible forms as:

Aetr = W2etr ; k2 : specifiedvalue (41)

Aetr = k2etr ; w2 : specified value (42)

In the latter case one finds that although A is real for loss free materials that A is not
symmetric. Thus linear algebra tells us that there can exist complex conjugate solutions of this
linear and real eigenvalue problem - a simple proof of existence for complex modes.

For the rather specialized but important case of cylindrically symmetric structures de-
scribed in (r - 4) - z) coordinates one can derive an eigenvalue equation for the modes using
et, = (e,, e.) as the state variables [22, 11]. The resulting eigenvalue problem is also linear and
simple and the algebraic eigenvalues are equal w2 . By defining a proper scalar product it has
been shown that in this case no complex solutions exist [141.

MAXWELL's GRID EQUATIONS IN TIME DOMAIN

When practically solving MGE in time domain one first has to discetrize the time axis, which
so far was untouched. There are of course numerous approaches to time integrate such systems
and here we only want to describe the three basic (canonical) methods.

Given a function f(t) for t > 0 we first break the time coordinate (here for simplicity) in
equal intervals 6t with t' = ibt and fi f(t').

The discretization of U (t) can be performed primarily by forward or backwards oriented
operators:

af(ti) S_ (fF _ f/t (43)
at

Of(t') (4
at = (/if,-f 1 )/~t (4

Introducing these schemes into MGE we first rewrite MGE as a single matrix equation:

Mf= D,"+s (45)

with the definitions:

Z. = I/A'•0_ (46)

M = 0Ot O (47)

( -C 0

Dm = 0 Z0D, ) (48)
f - Zý1/2e

(Z; 1/2 e (49).= ,0oI
( Z.. 1 / 2 i) (50)

0I



The forward discretization yields the recursion formula:

f'+' = (I + 6t D -' M ) f' - 6t D -' s' (51)

which is known to be unstable for any value of 6t.
The backwards discretization yields the implicit recursion formula:

(I-bt D- 1 M) f'+ - f0 + bt D- s (52)

which can be rewritten as recursion using an inverse matrix as:

fi+l = (I -6t D-' M)-' (f'+ 6t D- a') (53)

This formula is known to be stable for any value of 6t but the major draw back is that the
inverse matrix cannot be computed nor stored for large problems and thus each time step
requires the solution of a (large) linear system of equations.

A third scheme employs so a so called leap-frog scheme which samples values of e and b
at times separated by half a time step. With f'+12 := f(t = (i + 1/2)6t) one can rewrite the
MGE as a set of two recursion formula:

bi+'- bi-tCel+1/2 (54)

e1+/2 = el+l/2 +6tD,-1(6D-lbi+1 - ii+') (55)

This recursion when applied to regular (x - y - z) coordinate grids is a matrix formulation of
the local discretization algorithm of Yee [1]. In order to determine the stability of the recursion
one first has to rewrite it in such a way that only one single system matrix multiplication is
left. We first define

A = (+tD•_eD;I I+6t2D. 1 C (56)

= e(+2/2 (57)

si = (00 tD,1ii ) (58)

and obtain the recursion formula:

f -+l Af1 + s! (59)

This resurcion is stable if all eigenvalues Ai of A lie within the unit circle in the complex plane.
The advantadge of this leap frog scheme is that only simple matrix multiplications are required
for proceeding one step in time while the solution of a large linear system of equations was
employed by the backward difference scheme.

The drawback here is that the eigenvalues of A become greater than 1 for time steps
larger than a critical time step determined by the above relations. In practice it turns out that
the time step limit is in fact rather stringent.

In order to avoid the effort of actually computing the largest eigenvalue of A one can
employ the well known Courant condition, which however is equivalent to the eigenvalue limit
for the case of regular equidistant coordinate grids with homogeneous material only:

Atn(i <l bl+4 1



Thus in the case of generalized MGE the evaluation of the largest eigenvalues of A is necessary,e but does not represent a serious drawback as the eigenvalue calculation of large sparse matrices
is well developed and routinely used in the frequency formulation of MGE.

This relation, shown here for x-y-z coordinate grids, must be valid for each cell with
the local value for the speed of light. It is much easier to find the time step limit by this
approximation despite the fact that this limit turns out to be too small compared to the exact
one.

For material with a conductivity in a range such that the skin depth is larger than the
smallest mesh step, the above recursion formula can be extended at only little extra expense
to [12]:

b1+1 = b1-6tCe1 +1 /2  (60)

e+3/2 =- eD 1'IDat e1+1/ 2 + D-'(I - eD,'1 D.6t)(1bD;lbI+1 - il+1) (61)

If the skin depth is smaller than the smallest mesh step size a surface impedance model is
employed which assumes local plane waves and the known dependance of plane waves in con-
ducting material. Thus with the two latter extensions the time domain algorithm covers quite
easily the wide and important range of lossy materials, which are by far more difficult to handle
in a frequency domain approach.

Comparing the two time integration schemes shows that the leap frog scheme is appro-
priate for computation with a time scale in the order of the spatial dimension of the solution
space divided by the speed of light, whereas the implicit scheme is favourable for slowly varying
functions and large time scales.

As simple illustrative example we consider a space of the size Im x 1m x lm, a frequency
of 3 GHz, a spatial step of 1cm in each direction. To compute the penetration of a wave through
the entire volume we have to execute about 300 time steps only, which is a resonably small
number.

Consider the same volume but as problem the evaluation of the transient field of an AC-
transformer running at 50Hz for the first ten periods, we end up with 1010 necessary time steps,
which is certainly out of any reasonable limit.

Thus we find that both time discretization schemes are needed when solving a wide range
of electric engineering field problems.

Before considering more practical problems we should check the charge conservation of
both time stepping algorithms. Therefor we multiply the recursion formulae from the left with
the grid-divergence operators:

Sb-+1 = Sb 1-btSCe'+1/ 2  (62)
= Sb' (63)

SD~el+3 / 2 = SD,e|+1/2+btSDD-'(tD-1bi+1 - i'+1 (64)

- (Vee+1/2 Pi+1) (65)

Due to the basic relation SC=O we find that the charge conservation is explicitly built-in this
recursion for all times. The same property can be shown for the implicit time integration
scheme. The rounding errors nevertheless will introduce parasitic charges as all matrix vector
multiplication are of finite accuracy. We immediatley find that the leap frog scheme is much
less sensitive to round-off erros than the implicit integration scheme, which requires many more
floating operations per time step.

Now that we found the charge conservation in the time integration scheme it is worthwhile
to point out that the continuity equation is also an implicit property of MGE. To show this we
multiply the second MG equation from the left with the dual grid divergence operator:

§ (th = l+i) (66)



and immediately obtain, again due to S0 - 0, the continuity equation for the grid fields:

Si = -4 .- divJ = -ý (67)

The only condition to be met is that all driving sources i must be such that they are
charge conserving, which becomes quite important when adding free moving charges to the
field computation. Thus for field computations including free moving charges further conditions
must be implied on the driving terms. The origin of this additional problem is that free moving
charges are not grid-bound and thus do not produce a priori consistent grid currents and
charges.

In practice there are three regions of interest:

e slow particles: slow means here that the particle velocity v = /c 0 is small compared to
the speed of light and the mechanics can be treated as classical mechanics.

* fast particles: fast means here that the particle velocity v = fco is not small compared
to the speed of light and the mechanics must be treated relativistically.

* ultra relativistic particles such as electrons at a few GeV energy have a speed which is
very close to the speed of light. Here we can neglect the difference to infinite energy and set
/3 = 1. The mechanics in the ultrarelativistic case is decoupled from the electromagnetic
forces in the sense that the immediate reaction of particle motion can be neglected due
to their inifinte energy.

Fully relativistic treatment of free charges adds to the leap frog algorithm a second parallel
iteration for solving the mechanics at each time step. This is in practice much more complicated
and time consuming so that the field computation becomes the smaller part of the full problem.
By learning from early work in plasma physics one can treat the particles in a way such that
charge conservation remains fulfilled for all times [15]. For ultra relativistic simulation the
charged particle beam represents a current term in the field equation. By choosing the time
step in a proper way, one can here also a priori satisfy the charge conservation [16, 17].

The fully relativistic self-consistent simulation is a typical area where pure time domain
calculations do not suffice. In order to simulate a high power klystron for instance, one needs

* electrostatic fields in the electron source region

* magnetostatic fields of coils generating the electron beam guiding field

* RF resonant fields for the modes in the gain and output cavities

* time domain fields with the three above mentioned fields as starting conditin

The whole area of field analysis including the mechanics of free charges is a very wide subject,
too wide to be explored here in more detail, for further reading see [15]and references therein.

The last item to be adressed in discussing time domain analysis is the field excitation
from various sources. Typical driving terms are:

9 incident plane paves,

* incident waves in cables, microstrip lines, etc..

9 dipole radiators,

• electric currents and

e free moving charges



Plane waves can be implemented as inhomogeneous boundary condition where there realization
9 of open boundary conditions is a wide area of possible mathematics (and instabilities). The

proper realization of stable low-reflection open boundaries is rather complicated [12] [14].
Electric currents are taken care of by the appropriate terms in the recursion formula.
Also quite complicated are wave guide boundary conditions. First one needs a proper

mesh-consistent eigen mode solution of the wave port. This can be obtained by the frequency
domain version of the MGE. For each mode one knows the propagation constants and thus
can express the total field at a boundary as a sum of all wave guide modes. For transversely
homogeneously loaded wave guides it is sufficient to know the eigenmodes at one frequency only.
For this case a broad band excitation is possible. In case of non-homogeneous wave guides,
such as microstrip lines, broad band excitation is only an approximation. Broad band wave
guide boundary condition boosts up the usefulness of time domain analysis versus frequency
domain methods by orders of magnitude: Basically at the cost of obtaining one result for one
single frequency one obtains results for a large number of frequencies at a time. This feature
becomes extremely vital for instance when searching narrow resonances in a filter structure.
For further details on this subject see [181.

SOLVING MAXWELL'S GRID EQUATIONS WITH THE MAFIA CODE

The coordinate-grid version of the MGE has been implemented in various computer codes over
the last 20 years. Staring with 2D frequency domain codes in 1977 [2] [3] [4], followed by the
first time domain codes for relativistic particle beams [17], the first fully three dimensional
implementation was realized for 3D eddy current solvers in 1978 [19] [20] [21]. Later a new 3D
code family for 3D resonators and transient fields was developed, named MAFIA [8], released
in the first version in 1983. The first non-coordinate grid implementation was performed for
the resonator code URMEL-T [11]. Following the first release of MAFIA in 1983 the code
was improved significantly. Meanwhile the MAFIA family of codes covers a wide range of
applications such as

* electro static fields

9 magneto static fields

* low frequency eddy current fields

* high frequency eddy current fields (including displacment current)

e high frequency resonators and wave guides

* transient fields

e fully self-consistent transient fields including free moving charges

MAFIA and the 2D earlier codes TBCI [17], URMEL [22] and URMEL-T [11] are now in
worldwide use since more than 10 years in more than 25 countries. Applications documented
in several hundred publications by users have proven their accuracy and reliability in numerous
practical projects.

All examples presented here have been obtained from using MAFIA on workstations, such
as SUN-Sparc, HP7xx or IBM RISC.

EXAMPLES

We present here a series of practical applications of the MAFIA software. The description of
each example is contained in the figure captions. The examples were intentionally generated
with the currently available version 3.2 of MAFIA and not with software still being developed.

The examples are taken from practical applications in research and industry. They give
a short insight in what is possible to achieve today by anyone and not only by the authors.
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This example shall serve a prototype for explaining the steps towards a broad-band computation

of S-parameters. The structure is a piece of a chip showing two micro strip ports and two thin
wires connecting the strips with resistive blocks on the chip material. The resistive blocks have

a conductivity K = 13000S/m. the substrate a permittivty e = 9.0.

The geometrical extensions are about 700pm x 300pm. The problem here was to determine the
cross talk from one wire to the other within a frequency range of 0 - 50GHz.

The procedure is as follows: After calculating the proper eigen modes in the micro strip lines,
these modes are loaded and driven with a time dependent enrelope shown above as Input Signal.

The output signals at both ports are re corded in t, rrnm. of var', amplitudfs. After the output
signal has decayed, both input and output signal arf transformed to frequency domain by FFT.

A division of both Fourier transforms yields the desired 5-parameter in a very wide range of
frequencies, much wider than shown here.

The key advantadge of this procedure is that an entire range of frequencies can be obtained
roughly at the same cost as required for one single point in frequency when either applying

frequency domain analysis or monochromatic time domain analysis.
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These plots show an IBM PC (model
PS/2-30286) used for demonstrat-
ing the possibilities to study rf ra-
diation caused from the inner cir-
cuits. The top plot shows the metal-
lic cover with many ventilation slots
on the left hand side (which are prob-
ably hard to see at this resolution).
The second plot shows the metallic

frame with the disk slot and the rect-
angular hole at the rear for the slot
card access. The third plot shows all
innere pieces such as power supply,
cpu board, floppy drive, hard disc
drive, rf-cealing springs etc.
This PC was analyzed in both fre-
quency and time domain. Frequency
domain analysis allows easy identifi-
cation of inner resonances and eigen
fields. In time domain both broad-
band and monochromatic excitation
was employed, represented by cur-
rent on the cpu board. The plots
here show the results of a monochro-
matic excitation in time domain.
From the steady state field near the

. outer mesh boundary one obtains by
far field transformation the accord-
ing patterns as known from antenna
design.
Such a far field diagram is shown on
the bottom right hand side plot in the
horizontal plane. The left plot on the
bottom shows an (unusual) three di-
mensional contour surface plot of the
3D farfield pattern.
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The left plot shows a patch antenna on a dielectric layer with a coaxial feed underneath. In
order to find the frequency with the lowest reflection coefficient at the feed the structure was
first excited by a broad band signal. The resulting Sii(w) showed a minimum at 3.85GHz.
At this frequency a monochromatic signal was injected in a second calculation. The farfield
pattern is shown in the right hand side plot as three dimensional contourplot and was obtained
by a farfield transformation of the near field [24]. The total number of mesh cells used is
100.000, corresponding to 600.000 unknowns.

These plots show a
cylindrically
symmetric horn antenna ra-
diating at f = 10.4GHz de-
veloped by the DEUTSCHE
TELEKOM [23]. The ex-
citation is represented by a
H1 , wave. The upper plot
shows the lines of constant
radial component of the
electric field. The lower plot

R_ _ _ _ _ _ _ _ _ _ shows the measured (cour-
tesy of TELEKOM [23])

E/B and computed values for
0 .the E-plane far field pat-
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This example is a simulation of a full size per-
of son with a cellular phone in his hand. The body

• !: :material is modelled as human tisue (e~el =

40,Ko = 1.5S/m/.sel = 1). As this example was

oset up as proof of principle there is no internal
"structure of the body - but this is only a ques-

•a. tion of getting more detailed data. There is no

problem in defining a different material property
(e, pi, oK) for each cell.

The top left plot shows the 3D geometry. The
.etwo arrow plots show the electric and magnetic
field vectors for a frequency of 750MHz in a
cut plane. Circles show the vector components
perpendicular to the cut plane.The middle plot shows a 3D contour surface plot

of constant electric field energy in a cut-away
plot of the head region.
The bottom plot shows the SAR pattern
((1/2)E . J') in a cut plane through the head.

•• •The highest peak is located at the hand. The

second highest peak near the ear.
S~The total number of mesh cells used is 508.000,

corresponding to roughlyj 3.000.000 unknowns.
The necessary cpu time for this simulation on a
SPARC station is of the order of one hour only.
The memory required is 30 Mega Bytes.



The computation of fields from cellular
phones inside a human body are today
a problem of great interest. From the
analysis point of view this is a rather
difficult case. The material properties
of a human body are unusual for the-
orists normally assuming loss-free di-
electric or inifinitely conducting mate-
rials. On top of the material property
the material distribution is very com-
plex. The major difficulty to analyze
such an example was at the first point
to obtain good data for a human head
and to feed these data into the mesh
generator.
The left pictures show the generated
mesh using 1.200.000 cells for a human

head. Each cell of the mesh is filled with
a material according to the scan data.
Next to the head is a cellular phone with
an antenna, fed at 915MHz from the in-
side of the phone.
As the amount of data is so large, we
were not able to produce better plots for
this paper as POSTSCRIPT files exceed
several tens of mega bytes for a good 3D
picture. The top plot shows a 3D view
of the head model, the middle plot a cut
through the head showing the complex
internal material structure exactly as it
is modelled in the code (this is not a
plot of scanned data but a plot of mesh
cells filled with material!).
The computation with 7.200.000 de-
grees of freedom turns out to be no prob-
lem in terms of cpu time. Such an anal-
ysis requires roughly 100 MBytes mem-
ory and a few hours of cpu time - the
real problem is how to display such an
incredible amount of data in 3D.
If the same model were analyzed with
a surface method and a resolution of
60 different materials, such as mo-
ment methods, it would require about
1.000,000 surface elements, which is to
our knowledge out of reach.
The lowest plot shows the Joule loss
density (SAR pattern) in a center cut
plane through the head. One clearly
sees the maximum heat near the ear
next to the phone.
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As time domain computation are ez-

"Aa.ue Ophsiaime Using &h MAFIA Coumd Lanuag tremely effective and accurate it is prac-

tically possible to implement time domain
Detim ofMe a.. solvers into optimization codes. If a struc-

D mw = .of | ture is not too complicated, such as wave
guide transitions and simple antennas, the
total cpu time for a single analysis can be

m..u~koskmd AWpY Optimzation Strategy downm to a few minutes on modern work-
Evolutonary Methods. CG, etc.. stations. Thus it is within reach to run

Solve Flew r.o. -t Change •Pam,,-• several hundred jobs within a few days

Goal Fu•ction + Strtg and to apply some strategy to reach a spe-
Fully Ptogamable cific goal by changing geometric parame-

Evaluate Goal Function in MAFIA Commad Language ters from run to run.

I• The example here demonstrates such an
Gao Reahed? automatic optimization with the optimizer

YES NOmodule 00 of MAFIA-S.2. It is a tran-
sition from a rectangular wave guide to a
micro strip line. To ease the measurement
the transition was doubled and the micro

__strip is in fact in the center of the struc-
ture. The goal was to obtain a fiat S 21 for
frequencies of 10GHz+/-0-4GHz.

1.0 ------ -- This example was solved by MAFIA-0

invoking the modules M(mesh generator),
0.8 TS(SD time domain solver) and P(post

processor) and took about 4.8 days cpu

* ,* time on an IBM RISC/6000-550.
0.4 During the optimization 00 performed

C0e 350 runs optimizing with 30 degrees of
, ':freedom for the shape of the bottom and

tesd top layer. The mesh model had 40.000 un-
"0.2 ", : : l (o ) knowns. Each of these 350 runs resulted

(optinium)~ V -'--H Jin over 100 values for S21 in the desired
0.0 -4 frequency range of 9.6GHz to 10.4GHz.

8.0 9.0 10.0 11.0 12.0 The outcome of the optimization was such
frequency (GHz) a strange looking shape that we wanted to

verify the results by measurements. TheT1 F-- _J Bottom middle plot shows S21 versus frequency for

the initial shape, the optimized shape and
Top the measured results. The agreement be-

tween measured and calculated data is very
J< Bottom good.

The bottom plot shows the top and bottom
Top layer shapes for the initial transition and

the final optimized shape.



This plot shows a micro wave oven driven by a 2.4.5 GHz source. The power is fed through
a standard rectangular wave guide into the box. On a support there is a row of wet books (or
similar objects). The purpose of this device is to dry these objects. This case was simulated in
time domain. For the excitation we used the 2D frequency domain solver in oder to determine
the fieid distribution in the feed. The eigenmode field is used as incoming time harmonic bound-
ary condition field with a transition envelope slowly increasing the amplitude to its steady state
value. The total number of mesh cells used is 300.000, corresponding to 1.800.000 unknowns.
The left plot shows a three dimensional arrow plot distribution of the real part of the electric

field vector. The right hand side plot shows the heat source distribution within a cut plane
through the wet books. 0.0 /dB

-I0.0

-20.0

-30.0,
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11.0 12.0 13.0 4.0 o .0

Frequency/CGHz

The left figure shows a 3D view of a 3dB rectangular waveguide coupler with four ports built by
MBB (DASA). There are a number of slots adjusted such that a desired broadband behaviour
is reached. The right hand side plot shows Si1 versus frequency together with measured results
and results obtained from mode matching technique. This example was again analyzed with
time and frequency domain solvers. Frequency domain was used for computing the proper port
modes, time domain for computing the S-parameters. By means of a braod band technique the
entire frequency range can be analyzed with one single run. The excitation is set such that
a pulse with given band width is fed in such that it covers the desired frequency range. The
cpu time per S-parameter was as small as 5 seconds on an IB.1I550 RISC workstation, using
roughly 18.000 cells (or 120.000 unknowns). The accuracy compared with measurements by

MBB showed agreement better than 0.1 dB in transmission (S2 1) over the desired frequency
range. This is compared to pure frequency domain approaches almost an unbelievable value in
terms of accuracy and speed.



Time: 0.56 us

,.--. -- ------- -• ----------------- 
Z

Time: 1.12 ns The left plot shows a sequence of
plots for a bunch of dectrons travel.
ling along a cylindrically symmetric
structure at the speed of light. All
figures show only the upper portion

S ---------- or r > 0. The lines are equipo-
tential lines of the time dependent
time integrated vector potential andTime: 1.68 Usrare thus proportional to rgO. Below

the axis downwards the time depen-
dent current density of the travelling
electrons is plotted.

fI The bunch of particles has a longi-

S' tudinally Gaussian distribution with
an rms width of a = 4cm. The

Time: 2.24 us vacuum chamber with a central res-
onator has a radius of 21.0cm.
It is clearly observed that the field
lines are purely radial before the elec-
trons approach the disk in the waveg-

r-- - --....-- -uide - a consequence of the fact that
[ J the electrons travel exactly at the

Time: 2.80 ns speed of light. This approximation
is arbitrarily well fulfilled for high
energy electrons, which actually are
closer to speed of light than 6/ =
le-7 above some 10 GeV of energy.
Later the disks produce scattered

-- ------ fields that start to interact with
the electrons. This interaction pro-

Time: 3.36 us duces a change of momentum of the
elctrons and constitutes the main
collective (current dependent) limi-
tation for almost any accelerator.
These longitudinal and transverse

-----. .transient fields are called wake fields.
These plot have been obtained from

Time: 3.92 ns TBCI [17].

----- -- -----------
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This device is a high brigthness electron
source developed at CERN and BNL(New
York) and works similar to a klystron. The

t 1--35 ps simulation shows a cylindrically symmetric
"- =sa -- 1-1/2 cavity resonant at 3GHz. The cav-

ity mode (TMolo) is computed first in fre-

-: ..... : .... quency domain as eigen value problem and
then loaded (after proper amplitude scaling)
into the time domain self-consistent simula-
tor. On the left there is a photo emission
cathode illuminated by a short laser pulse.
Electron bunches are emitted and accelerated

t=405 ps by the rf field of the mode with a strenght of
""•--'-- OOMV/m. This simulation includes the full

....... . a .... set of Maxwell's equations and the fully rela-
- .- tivistic equation of motion for the electrons.

Thus all effects such as space charge, tran-
sient fields and interaction with the resonant
fields are included. As result of the interac-
tion the electron bunches blow up.
The left hand side series of plots show the

t=495 ps electron bunch traversing the cavity at sev-
.. ..... :..• eral time instances. The right column shows

Saa..... ..... ... ..r -the starting solution obtained from frequency
.. . . ....- - ----- a - -domain analysis.
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ABSTRACT

This paper assembles various models that were developped using Finite

Difference Time Domain (FDTD) Method to characterise coplanar waveguide

(CPW) uniaxial discontinuities (step in width, gap, short circuit, open circuit)

and multiaxial ones (Tjunction. bend). Comparaison of these models with those

developped using other general purpose methods will be presented whenever

possible. Models for other possible CPW discontinuities used for monolithic

applications like air bridges and via holes for conductor backed CPW will be

Oiven also. For CAD purposes, these discontinuities will be modeled between

predefined reference planes either by an equivalent electric circuit or a

scattering matrix.

WHY

CLAw Micrsnrip

series easy. easy
connection

shunt easy difcult
connection

dispersion low high

radiation low high
losses

CAD inadequate adequate
facilities

------ > -------- -> even mode

* -o odd mode



Advantages of the FDTD method:

- General 3D method. not limited by any

assumption concerning the boundaries or the

configuration of the structure to be studied.

- Wide band characterization of the circuits

after a single computation (the frequency

domain methods compute a single frequency

point at each simulation).

- Direct physical interpretation.

- Analysis of problems where the shape of

signals is needed (e.g. logical circuits).

- Well adapted for the insertion of lumped

non-linear elements.

- This method can fully benefit from the

possibilities of new parallel and vectorial

computers.

Characterization of a microwave circuit

using the 3D Finite Difference Time Domain Method

FDTD algorithm

Time domain evolution of the electromagnetic

field in the studied domain

Field Distribution

Frequency domain parameters



Maxwell's equations:

VxE (1)

6~E 'V2)

x Ha

We have to discretize: , ,,

It is a double discretization, in time and in space:

1. In time :

2n! -+ Electric field calculation2

(2n + I)! -* Magnetic field calculation

Stabilitv condition:

dt•5 (4)

dxZd
2 

d Z2

2. In space : rectangular mesh.

Ez

F iel c .p ne t in th uni m................................ ......... .e sh



O.jk) = Hx (i,j,k) - , , +[EE(i,j +I, k) -E](ijk)1g d izE x c it a ti o n

-L -- [En(i j, k + 1) - En(ij, k)]

11
0, J, k) Hy (i,j, k) - (-[En(*, k + I) -E(i,j, k)]

Initially all fields are 0.

+ d + ,j,k) - E(i,j, k)] iThe following steps are
repeated for each time
domain step

z (ij,Jk) =Hz :(,j, k)--L'(-0 +1, k -E ,(ij, k)] Mmesh port 1. neyj filest poti files

+ --L[E(i, j + 1, k) - En(i,j, k)] 1(n-11/2) is calculated using
the FDTD equations.

E(n+l) is calculated using
the FDTD equations.

Tangential E field is set to 0
+1(i,j,k) E.(i,j,k)+ - 1, on conductors.

(ij~)= X0j~)+LtHz(ijk) -H 0 1k)]

dt H11 - H1 k- 1 Save desired field quantities.

i, " n -

-I Iy E2(ijIk) l)• . 1 _ __

n'(i.j,k) = n (,j,k)+ A H'. j,k) - H 0z-,j, k )- F)

(di



Determination of 04()) ror uniform CPW 3W2)9 93

3h

Ez((O, ylI + dy) =F[Ez(t. ylI + dy)]
Ccopaner Waevegulft

w-0O343rnm guo.147rnmn

EZ(O. -YlI + dy) =Ez(ax, y1De -D(O'y

ejP('O~dy- Ez'o)-y')Ez~o.y I..dy)

P3((O) In k' Ez~oo2yJ o Commercial program

idy E~a),yI +dI

X(w ) = XO) ()-PW

_c]. = [c ,)]
Vef(Q) (000 1. 003.

W.7/I Ve 0

N 'k N

'a.EE OcI IV Vvv

CPNN rnvre il atr at the reference plane y I



P1 P2

Vi(t) •- loVtot

Vr(t) Vt(t)

ul (t)

incident reflected
signal signal

u2(t)

transmitted
signal

Scattering matrix parameters for a quadripole



(Cnlductor-backed (CP\t for AIIf(: applications

p

y --
L2

S' 7 "/7"... > L2

S,--,x/ ----------½

3 h g w g 3h 3h /77 '/

/1 ,a, ' 'g7
,,77i/,//4/''2/7"7,/';'//1< 

/, / ,

/ g" 

, ,>//// 

h

b g w g b

=• -m ,•-4 am h=!()O um •. 1 CP\%' open circuit discontinuil-v

.- eK

" Tm de

Tim doansga aihteeenepae



- S parameters for the open circuit

L2

CP hrt cicuitdicontinuit



-o

0 . 0 2o . 0 4 0 . 0 0 - 0 0. 0 e o .• 1 2 0. 0 ~ . 1 4 0o . 0• 1 0 . 3 1e C ..:
ttmGe lpsý

Time domain signal at the reference plane P2

I S parameters for the short circuit
7N

IC

100 0 36. 40.n 56.3 60.0
L -



L4

/'---- ------------- P2

L3

~ 4 ---- ---
LG

/~ ------------- -------L

-
-O

b a w g

CPNN gaip discontinuity

frequercý Gz



9g2 w2 g2

'½' L4

/ ~P2

/U

L3

P1

L2

1l W1 gi

CPN'*step in width discontinuity

~ (GHz3



d I

C;-

froquencSl tGHz )

- 9.6

w1Olmm
It . 0.4 MM
w= ()L6 mm
2b -0-1 rfm

Equivalent circuits for studied discontinuities

C1

Ga

Open Circuitc=.7f =f CGpi ,
C02 C CI=22.8 fF :C2 -,LCZ

Se C2=1.7 fF

L1 L2

eStep "ir M
Short Circuit e ..,, L1=0.9 fH'

L=1 20 fH e iL C

C=8.1 fFT 5 I



9 12

P2

. I,

CPW T junction

Right angle CPW bend includin- three air bridges

including two air bridges

• " .... "_ • S21I oddl'odd

S:I odd/odd S

S: I odd/e~ven ý SZI odd'ev ene.
- ------- 

------

a.,: i.: a.: On 4-n UI.O 0m3D0. .3. , ILO -0.3 U.0 U.0

Variation of the scattering parameters S21 Variation of the scattering parameters S21
as a function of frequency as a function of frequency

for the right angle CPW bend for the CPW T junction

without air bridges without air bridges
Swith air bridges with air bridges



41

uruT

0 10 20 40GHz4O

Mode conve"mn wIth difueut boand -re
pGatioe..

The air brndp T-JUSCtiOS

-Lim

"0 50 100 GHiz 2OO
f-o

MJode cowmumou for diferent T-jwcti-,
w - LL J n= - lowm. . a 12.3.

Effect of position and geometry of air bridges Ref to)



e A A

- -- A h o

(a) (b)

Via hole ground in microstrip
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(b) Cross sectional view through the via hole

w=2.3 mm, hO-0.794 mm, d-0.6 mm, £r=2.32

La 4.4 LO |. LA 12.A I9..

Variation of IS211 for a via hole in microstrip
as a function of frequency

- our results
experimental results of Mr. Sorrentino [431



P2

A A h
----- -- --- ---- --- ---- --- - / .. . . . .. . . . . . . . . . ... ...... .'• ' it'" ! : • b

2Lo xg w gx

L=, pm hb=5 pm

Air bridge on a conductor backed CPW

0" •2A

- ""

i 0.0 10.0 26.0 36.0 46.0 0.0 f.0

frequenci (GHz)



00

0 I

0.0 20.0 40.0 60.0 60.0 100.0 120.0 140.0 160.0 1i0.0

"Lme (psi

FI L

0

C.
0I - I . -.

01- /-

0.0 20.0 40.0 60.0 80.0 600.0 120.0 140.0 160.0 190.0

L.•me (ps)

Time domain signals at reference planes P1 and P2



Equivalent circuit for an air bridge
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Via holes in coplanar waveguide
(a) Geometry of the via holes

(b) Cross sectional view through the via holes
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CONCLUSION

A Adaptability of FDTD Method for Complete control of CPW characterisation

characterisation of CPW structures using FDTD Method:

- Uniform line

- Planar axial and multiaxial discontinuities

- 3D discontinuities (air bridges, via holes)
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Enhanced Finite Difference Time Domain (FDTD) Method for
Active and Passive Structures

B. Houshmand and T. Itoh
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Los Angeles, CA 90024-1594

U.S.A.

AS•cRA'

The Finite-Difference Time-Domain algorithm is a powerful method for analyzing
the electromagnetic wave behavior in a complicated geometry. This method, however, is a
memory intensive and time consuming operation due to spatial and temporal discretization.
Here the FDTD is augmented with Diakoptics and System Identification algorithms in
order to reduce the computational cost. Furthermore, the FDTD algorithm is extended to
include the analysis of nonlinear and active regions. Theoretical development and
numerical examples are presented. A comparison of the nonlinear FDTD algorithm and
measurement results demonstrate the versatility of this algorithm.

1L Introduction

It is well known that the Finite-Difference Time-Domain (FDTD) is a powerful

method for analyzing the electromagnetic wave behavior in a complicated geometry. This

method, however, is a memory intensive and time consuming operation. Recently, we

have utilized several techniques to alleviate these deficiencies. Specifically, we have

implemented the FDTD Diakoptics method to use numerical Green's function to replace

large computational volume with its impulse response. Hence, the memory requirement is

drastically reduced. For reducing the computational time, we have implemented a method

based on the system identification (SI) technique. A reduction of computation time of a

factor of ten can readily be attained. In addition, we have analyzed large volumes

containing active and nonlinear regions (or devices, plasmas, etc.) by means of FDTD

environment.

In this paper, an overview of the FDTD Diakoptics, application of system

identification to the FDTD algorithm, and application of FDTD to nonlinear and active

regions are presented. Several examples which illustrate these methods are included.

U, FDTD Diakoptics

Analysis of a computationally large circuit can be accomplished by dividing the circuit

structure into several small modules. Each module can be analyzed separately, and the
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mutual interaction of the modules can be included by proper treatment of the circuit

boundaries. Based on this methodology, the time-domain Diakopti.s method has been

developed in TLM 1 11, [21, and in FDTD 131, (4]. The time domain Diakoptics can include

all the mutual interactions among modules through a convolution interface without invoking

any approximations.

The time-domain Diakoptics uses time-domain convolution for connecting modules.

This convolution requires the knowledge of the impulse responses of the circuit segments.

These impulse responses are in effect the numerical Green's functions.

1.1 Theory

Time-Domain Diakoptics originates from the linear circuit theory. Once input and

output ports are identified, the system output Y(n) of a passive structure can be determined

from the convolution of the system impulse response h(n) and the input X(n). This

indicates that the complete two-port linear passive structure can be replaced by its impulse
response h(n). Similarly, multi-port linear passive region in the field calculation can be
replaced by an impulse response matrix [g], see Figure 1. This operation is similar to the
method used in [51. The multi-port convolution is defined

N K
Ymk)=--1 g(m,n,k-k')Xn(k')(1

n=1 V =0

where g(m,n,k') is the impulse response (or the time-domain Green's function) at port

"m" at time t=k' due to the unit excitation at port "n" at t=O.

The computation of the numerical Green's function is performed by applying an

impulsive source at the input port of the passive structure. If the impulse response over a

limited frequency range is required, the frequency band-limited response can be computed

by applying a deconvolution process between the structure output and the input signal
which spans the frequency range of interest [6].

11. Result,
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The numerical behavior of the FDTD Diakoptics is demonstrated by applying it to a

one-dimensional circuit. Figure (2) shows an infinitely long parallel-plate transmission
line loaded with lumped elements and material discontinuity. Only the TEM mode of

operation is considered due to the dimensions of the problem. As such, the results
produced by the time-domain Diakoptics can be directly compared with those produce by

conventional time-domain circuit simulators, like Microwave SPICE (MWSPICE). Figure
(3) shows the agreement between the MWSPICE and the FDTD Diakoptics method.

Ill. System Identification

The Finite-Difference Time-Domain algorithm is an effective computational method
for full vector analysis of microwave structures [7]. The theoretical formulation directly
follows the Maxwell's equations, and algorithm implementation is simple and flexible for
general structures of interest. The computation requirements, however, is excessive due to
the spatial-temporal discretization. Recently, digital signal processing methods have been
used to reduce the computational requirements of the time-domain methods [8-111. For

example, The Prony's method is used to estimate the time signal in terms of the previously
computed values [8], also a covariance based system identification (SI) algorithm has been
used to reduce the computation cost of the Transmission Line and FDTD Methods by
employing a stochastic ARMA model 19-10]. In this paper a Least-Squares based system

identification projection algorithm for a deterministic Auto-Regressive Moving Average
model is applied to the FDTD algorithm 1121. The application of this algorithm to the
partially filled rectangular cavity has demonstrated excellent numerical results. Savings in

the computation requirements are achieved by replacing the comi •tationally intensive

FDTD algorithm by the ARMA model for output signal computation, after the system
parameters converge to their final values. In addition, the frequency response is evaluated

directly from the computed system parameters, thus eliminating the need for Fourier
Transformation.

IhI,.I.THQOR

The computed time signal at an appropriate location in the computational volume and

the corresponding input signal can be interpreted as the input and output signals of a
discrete linear system. This linear system description is

K M

y(n) =- ak y(n-k) + Ya b. x(n-m) (2)
k=1 m=0
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The output signal is completely known when the model parameters (ak, bin) are computed.

The parameter space is taken to be large enough to allow the convergence of the model

output to the FDTD simulated field values. Equation (2) can be written in a compact form

y(n) = eT(n- 1) O0 (3)

where T stands for Transpose, and 0 is a vector containing the present and past values of

the input and output which can be considered as data. The vectoc 8o contains the system

parameters and uniquely defines the properties of the linear system such as the resonance

frequencies. Equation (3) represents the output of a linear system as the inner product of
the 0D and the parameter vector. Using the available data vector 0, the output signal can be

estimated in terms of the estimated system parameters

A TA
y(n)=O(n-l) O(n-1) (4)

The difference in Equations (3) and (4) is minimized with respect to the system parameters

to arrive at a parameter update law

A A P(n-1) cD(n-1)
O(n) - O(n-l) + [T [e(n)] (5)

4D(n-1) P(n-1) 0D(n-l)

P(n-1) 0D(n-l) 0(n-1)T P(n-1)
P(n) =P(n-1) -, P(O) = I (6)

0(n-1) P(n-l) 0(n-1)

where P(n) provides an orthogonal projection search in the parameter space which results

in rapid parameter convergence [12], O(n) is the computed parameter vector, and e(n) is the

discrepancy between the estimated output and the FDTD computed field value.

Computation of Equations (5) and (6) requires only vector addition and multiplication, and

results in minimal additional cost to the FDTD computation. We note that the system

parameters converge to their final values when the output error is sufficiently small.

111.2RESULTS

The numerical behavior of this method is demonstrated by applying it to the cavity

problem. An ARMA model with system parameters K=40, M=40, see Equation (2), is

used to obtain the resonance frequencies of a rectangular cavity. The cavity is excited at the



9 5

center plane by imposing a TE10 mode distribution with impulsive temporal dependence.

Figure 4 shows the parameter convergence for a number of system coefficients. The initial

condition for the parameters is set to the origin of the parameter space, and the parameter

values are updated at each sampled interval.

The resonance frequencies of the cavity can be derived directly from the poles of the

ARMA model. They can also be recovered from the spectrum of the output signal. This

spectrum is computed by the Fourier Transform of the output signal, or directly by

evaluation of the Z-Transform of Equation (2) on the unit circle which is defined in terms

of the system parameters. Figure 5 shows the spectrum of the output signal using the

system parameters and the Fourier Transformation of the output signal. The recovered

resonance frequencies of the first three odd modes are illustrated. The location of the

observation point coincides with the null position of the even modes as the result these

modes can not be recovered form this time signal. In this example, the ARMA based

spectrum is computed using 140 output samples. Similar spectrum is obtained by applying

the Fourier Transformation to 500 output samples. Figure 5 also shows the Fourier

Transform of the 140 output samples which are augmented with zero padding to provide

sufficient spectral resolution for locating the spectrum peaks. This spectrum, while

qualitatively locates the resonance frequencies, is distorted and might not provide sufficient

resolution where the resonance frequency separation is small. We note that the first two

resonance frequencies are predicted accurately for this example, while higher order modes

are underestimated due to frequency dispersion of the FDTD spatial grid. This method is

used to obtain the resonant frequencies of a partially filled rectangular cavity. Figure 6
shows the shift in the resonant frequency as the permittivity is gradually changed from e=l

to e=2.

IV. Modeling of Nonlinear and Active regions with the FDTD method

The FDTD method can be extended to include nonlinear and active regions embedded

in distributed circuits. Recently, the two dimensional FDTD was extended to include

active, passive and possibly nonlinear lumped circuit elements [13]. In that work the

incorporation of the lumped elements into the FDTD algorithm is described, and

transmission lines with various lumped element loads were simulated. In [131 only one

active load was modeled, which was linear, and the modelling follow the same procedure

as the passive lumped elements. The inclusion of active nonlinear regions, however,
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requires additional procedures in order to preserve the numerical stability of the FDTD

algorithm.

This effect is observed in [14] where the TLM method was used to model active

nonlinear subregions of distributed circuits, and it was noted that regions of negative

conductivity may cause spurious oscillations at the TLM mesh cut-off frequencies. To

circumvent this problem, the TLM mesh cut-off is chosen to be well above the active device

cut-off frequency. Similar condition holds for the FDTD algorithm. In addition, we have

found that in many cases the FDTD algorithm will become unstable unless some care is

taken in incorporating the active device model. This is due to the fact that realistic active

devices can produce extremely large local currents. These local currents, in turn, produce

large fields that are fed back into the device model which can create unstable behavior.

Here we describe the steps we have implemented to produce a stable algorithm, and

we use this algorithm to simulate an active antenna. This method is used to simulate a

three-dimensional microwave circuit containing an active and nonlinear device. Figure 7

shows a two element active antenna which is examined. Each patch is excited by a separate

Gunn Diode and therefore the circuit really consists of two oscillators. However, the two

oscillators are strongly coupled through a length of transmission line and there are several

possible modes of operation for the entire coupled circuit. In [15] an extensive model

analysis, which determines the most stable mode of operation, has been described. We

will demonstrate here that the FDTD is able to correctly predict this model as well, with the

additional advantage that the complete electromagnetic behavior of the circuit is obtained. It

is important to note that while a frequency domain analysis can be used to determine the

possible circuit modes, the frequency domain analysis alone cannot predict which is the

most stable mode and hence cannot predict the steady state behavior of the circuit.

IV.1 Theo=

As mentioned above, special care must be taken to simulate nonlinear and active elements in

the FDTD or TLM. First, it is necessary that the cut-off frequency of the active device be

well below the mesh cut-off frequency to prevent the unstable oscillations at these

frequencies. We therefore model each Gunn diode by the equivalent circuit shown in

Figure 8. The active current is given by the polynomial

3F(V,) = -GI V, + G3 Vs (7)
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The coefficients were determined experimentally from measurements at 10.48 GHz

(the patch resonance frequency) to be GI = 0.0252 ohm-1 and G3 = 0.0265 ohm-l V-2,

and the capacitance was determined to be C= 0.2 pF. The series resistance was estimated

to be R=l.0 ohm. Note the instead of using complicated model for Gunn diode which

would incorporate the correct dispersive behavior, we are using a simplified model which

is approximately correct over a narrow frequency range and ensures that the active device

cut-off frequency is bellow the mesh cut-off frequency. This simplification is justified by

the highly resonant nature of the circuit, which limits the possible frequencies of interest.

To incorporate the package diodes into the FDTD mesh, we use an equivalent active

region which extends over three vertical cells between the microstrip and the ground plane

(Figure 7), and occupies only one cell in the horizontal or x-y plane. Note that we cannot

assume each mesh cell in the active region is dependent only on the local field at the cell, as
was done in [13], [14), and [161. This is because each cell will then act as a separate diode,

with aggregate effect of tree diodes in series. Instead, we model the entire active region as

a single diode. The total voltage across this diode is given by

V n+1 V A 3

V(0 + V V [E+'O(is, js, k) + Eý(is, js, k)A (8)
k=1

Here n represents the time step increment, and (isjs) are indices in the x, y plane for the

two active regions (s= 1, 2). This time average voltage is then fed into our active device

model (Figure 8) which then calculates the total current by

A01n+l = AIln - A2 F(Vn) - A3 Vn-I - A 4 Vn + A 5 Vn+1 (9)

with

A0 = 2RC + At + R At F(Vn), A, = 2RC - At + R At F(Vn), A 2 = 2 At,

A3 = C, A4 = At F(Vsn), A5 = C + At F(Vsn)

where (.) denotes the derivative of the dependent current source with respect to the voltage.

A forward differencing scheme with time averaging has been used in order to produce
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stable oscillations. This process is described in more detail in [171. The current is then fed

back as a source into the FDTD cells in the active regions. For each active region (s= 1, 2),

jr. i, j., k) = .L(i., j., k) + L[Hx #H rH1- + V (10)

t At Y 2Ax Ay

The term L[Hx, Hy] is

I 1 1 1

Hx " (i, j-1, k) - 2 (is, js. k) HF 2 (is, js, k)- Qi-Ay + Ax (k1)

Equations (8) and (9) are then used in (10) in order to obtain a stable FDTD algorithm in

the active region [ 171. This algorithm is stable for circuits embedded with nonlinear active

regions which we have considered.

IV.2 RESULTS

By using the modified FDTD algorithm described above, we have simulated the two

element active antenna shown in Figure 1. A small amount of numerical noise is

introduced into the FDTD mesh, and oscillations build up until a steady state frequency of

12.4 GHz is achieved (Figure 9). The measured frequency is 11.8 GHz and the frequency

predicted by the modal analysis [181 is 12.2 GHz. The 5 percent discrepancy in the

predicted frequency can be attributed to modelling errors in the geometry description and

measurement of the Gunn diode parameters. What is more significant is that the FDTD

simulation has predicted the same stable mode of operation as was observed in the

measurement (there are three possibilities [181). This cannot be done with a frequency

domain simulation. The stable mode is an odd mode which can be seen clearly in Figure

10, where we show the steady state voltage across each diode as a function of time. Figure

11 shows the distribution of the z component of the electric field at the dielectric-air

interface.

V. CONCLUSION

In this paper an enhanced Finite-Difference Time-Domain algorithm is presented.

The Diakoptics and System identification algorithms have the potential of reducing the

computational cost effectively through reducing the memory requirements and simulation
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time, respectively. The FDTD algorithm is also applied to problems which include
nonlinear and active properties. It is noted that care must be taken in order to insure the
stability of the algorithm. The modified FDTD algorithm is used to analyze a two element
active antenna. The simulation has remarkably produced the proper steady state behavior
which is indicated through measurements.
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Figure 1. A multi-port linear passive region is replaced by its impulse response
matrix.

Figure 2. A multi-layered circuit is analyzed by the FDTD diakoptics. The impulse
response of segmentations are combined sequentially.

Figure 3. Comparison of the ransient current flow through the circuit resistor. The
FDTD diakoptics compare well with the MWSPICE simulation.

Figure 4. Parameter convergence of the ARMA model with 80 coefficients. The
evolution of the first four output coefficients is demonstrated.

Figure 5. FDTD generated spectrum. 140 samples (at a rate of I sample per 5 FDTD
output values) are used to obtain the spectrum by the SI method. Similar
spectrum is obtained by Fourier Transformation of 500 samples. The
Fourier Transform of 140 samples with zero padding is distorted.

Figure 6. Resonance frequency computation of a partially filled rectangular cavity
using the ARMA model. The first resonance frequency shifts at the
permittivity is changed gradually from I to 2.

Figure 7. The layout of the two element patch array.

Figure 8. Circuit model of Gunn Diode.

Figure 9. The time development of the total voltage across one oscillator.

Figure 10. The steady state time vati Ations of total voltage across each oscillator.

Figure 11. The steady state electric field distribution (z component) at one instant in
time.
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ON THE FIELD THEORETICAL FOUNDATION OF THE TRANSMISSION LINE

9 MATRIX METHOD

Peter Russer and Michael Krumpholz

Ferdinand-Braun-Institut ffr Hochstfrequenztechnik, Berlin
Lehrstuhl ffir Hochfrequenztechnik, Technische Universitait MiInchen

Abstract

Field theoretical foundations of the two-dimensional TLM method and the three-dimensional TLM
method with condensed node are given using the method of moments with sectional base functions.
Introducing the Hilbert space representation for the field state, the description of geometrical structures
and the field evolution is performed algebraically. It is shown that the sampling of the tangential electric
and magnetic field components in the cell boundary surfaces yields a correct bijective mapping between
electromagnetic field components and TLM wave amplitudes. The same method is applied to derive the
two-dimensional and three-dimensional FDTD schemes. For the calculation of the TLM and FDTDM
dispersion relations, we use a new generalized method. A critical comparison of two-dimensional and
three-dimensional TLM with Yee's finite difference time domain method is given.

1 Introduction

Although the TLM method has proven to be a very powerful method of field computation III, there have
been only a few investigations about its theoretical foundations. Originally TLM is based on the analogy
between the electromagnetic field and a mesh of transmission lines 12]. In this paper we derive the two-
dimensional TLM-method [II and the three-dimensional TLM method with condensed symmetric node
introduced by Johns [31 directly from Maxwell's equations using the Method of Moments (41 and the Hilbert
space representation of the TLM method [5, 61. For comparison of TLNI with FDTD we also apply the
Method of Moments to derive Yee's two-dimensional and three-dimensional FDTD schemes (7, 8, 91.

In TLM, the continuous space is discretized by introducing a TLM mesh with the TLM nodes as the
elementary element. The electromagnetic field is represented by wave pulses scattered in the nodes and
propagating in transmission lines between neighbouring nodes. This picture of TLM stresses the analogy
to the network concept. However, the introduction of wave amplitudes has to be related to transverse
electric and magnetic field components. Therefore, in contrast to the one-dimensional case where the
introduction of wave amplitudes is a formal substitution of variables, the introduction of wave amplitudes
in two- or three-dimensional space requires at first the introduction of any set of curves of reference (for
two-dimensional TLM) or planes of reference (for three-dimensional TLM) defining tangential planes.
The transverse electromagnetic field components are defined with respect to these tangential planes and
the wave amplitudes are normal to these tangential planes. The boundary of an elementary TLM cell is
formed by the boundary curves or planes of reference. In each boundary plane seperating two TLM cells, a
sampling point for the tangential electric and magnetic field components is chosen. In the network model
of TLM, in each sampling point, one port is assigned to each polarization. By this way, we assign an
elementary multiport to each TLM cell. In the literature, this multiport is called the TLM node. In the
following, we use the term TLM cell for the geometrical object we have defined in the continuous space,
whereas the term TLM node is used for the abstract network model representing the relations between the
wave amplitudes in the sampling points of a TLM cell.

The definition of all six electric and magnetic field components at the center of the TLM cell [I, 31 causes
serious problems because the mapping between the field components and the wave amplitudes is not
bijective. However, introducing the wave amplitudes with respect to the TLM cell boundaries yields a
bijective one-to-one mapping between the electric and magnetic field components and the wave amplitudes.
We use this cell boundary mapping to obtain the fundamental TLM equations for wave amplitudes from

| ........ . . "• . ..... •( m m~~~~ ~~~i n ml m m N i • • m m ml m mm - . ...



the discretized field equations for the electric and magnetic field components. In this way, the TLM method
with condensed symmetric node is derived from first principles of field theory.

For the derivation of the two-dimensional TLM method, sampling Maxwell's equations with rectangular
pulse functions yields three discretized field equations for the three electric and magnetic field components
at the center of a TLM cell. For the field components at the cell boundary, the mean values of the field
components in the two neighbouring TLM cells are taken. We call these mean values the cell boundary
mean (CBM) values. Introducing the CBM values of the electric and magnetic field ,omponents yields four
discretized field equations per TLM cell. Applying the cell bouindary mapping, we obtain four discretized
field equations for wave amplitudes which determine the scattering matrix of the two-dimensional TLM
method uniquely. In two-dimensional TLM as well as in two-dimensional FDTD, there are three linearly
independent electric and magnetic field components per unit cell. Introducing the mean values of the electric
and magnetic field components, an additional degree of freedom, which corresponds to an additional solution
in the two-dimensional TLM method, is introduced. This becomes clear by investigating the eigenvalues
of both methods.

Due to the spatial discretization, the TLM and the FDTD method exhibit a cutoff frequency and deviations
from the linear dispersion relations for frequencies approaching the cutoff frequency. In order to estimate
the error introduced into the calculations by these deviations, the dispersion relation of the discrete mesh
has to be known. The dispersion in FDTD has been investigated intensively. The method for the calculation
of the dispersion relation for different FDTD schemes is well-known 110, IIl. In contrast to FDTD, only a
few TLM dispersion relations are known in closed algebraic forms. The usual approach for the calculation
of TLM dispersion relations is based on network considerations 111. The approach fails if the TLM node
cannot be represented by an equivalent circuit as e.g. the three-dimensional condensed symmetric TLM
node introduced by Johns 131. Nielsen has calculated numerically the dispersion relation of the three-
dimensional condensed symmetric TLM node 112, 13). Based on his approach, we calculate the TLM
dispersion relations algebraically 114, 151. This method for the calculation of TLM dispersion relations
may be applied to any kind of TLM nodes described by square scattering and propagation matrices of
equal dimension.

2 Three-Dimensional TLM with Condensed Node

To derive the three-dimensional TLAI method with condensed symmetric node, we apply the Method of
Moments 141 to Maxwell's equations

×H o (1)

Zo OHV × V, =(2)
c Ot

with the wave propagation velocity c = 1/,ji6-i and the wave impedance for the free space Zo - v'.i
We expand the electric fields In

+00
k 1k /2 Elf +E:(~,t) k+I/2E.+1/ 2 ,n P'm+ 1/2,n(Y) Tk+ 1/ 2 (t)+

kL,m,n=-oo

+00
+ Ej k+1/2E1 ,m,n+1/ 2 F1Xl.m,n+1/2(9) Tk+1/2(t)

k,1,•,n=-oo

+00

+ Z k+I/2Em,U+1/ 2 •'m,n, k.1 /2 (f) Tk+u/2 (t)k,,lrm,n=-*o

kl,,.n=-oo
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+00

., = : k+l/2E,/ 2 ,rnn F�-+ 1/2,.,,(Y) Tk+1/ 2 (t) +

kj,"~t,.•-

+ , k+i/2EL,in.+ /2,n, .+ 1/ 2n.(4 Tk+1, 2 (t)
k,Im,n=-oO

(3)

where k+1/2Em,, and k+I/2Hrm,n with 1 = x, y, z are the expansion coefficients. The index k denotes the
discrete time coordinate related to the time coordinate via t = kAt, where At represents the unit time
interval. The indices L, m and n denote the three discrete space coordinates in x-, y- and z-direction
related to the space coordinates via x = IAI, y = reAI and z = nAl, where Al represents the unit space
interval. For the magnetic field components H_(Y, t), Hvz(, t) and H,(f, t), we proceed in the same way.
The base functions in time Tk:i/2 are given by

Tk,.l/ 2 (t) =g - k: 1/2) (4)

where the triangle function g(x), see Fig 1, is defined by

9(x) 1 -0 Ixl forf~ Ijlxj < 1i (5)
1 0 ~for Hx Ž1I

The use of the functions TkH,/2 provides a piecewise linear approximation 141 of the exact solution of

g(x)

-1 0 1 x

Figure 1: The triangle function g(x).

Maxwell's equations with respect to the time coordinate. The base functions Ft'm,n(a) with/. = x, y, z are
given by

F~mn() = H(- - 1) F.,,. (y, z)

Fly,,,(f = H(- -tit) F,,,(x, z)

F, = H( n) ),,,(x, y) (6)

with the rectangular pulse function depicted in Fig. 2

1 for IxI < 1/2

H(x) 1/2 for IxI = 1/2 (7)
0 for IxI > 1/2

3



H(x)

-1/2 0 1/2 x

Figure 2: The pulse function H(x).

and the t ,vo-dimensional triangle base functions
Fl,,(.T, y) = w( - I m) (8)

where
w(X, y) = g(x - Y) g(x + Y) (9)

The function g(x) g(y) is depicted in Fig. 3. Expanding the electric and magnetic field components using the
functions F provides a step approximation [41 in ji-direction andi a piecewise linear approximation
in the diagonal directions of the plane perpendicular to the jtt-irection.

g(x). g(y)

o0

0

II

Figure 3: The function g(x) g(y).

Sampling OE,/Dy yields

JJJn'E 6(L-ktt) 6(x -Ax) 6(y-mAp) 6(z -nA) di d/ dz dt

4



- (k+1/2E~am+1/2.n - k+1/2E1m1/, + k-1/2EI.nt+1/2,n k- 1/2EI~m-1/2,n)

Sampling OEv/i~z and i9H,/Ot, we obtain

..1H.r+I1/2,n + k+ 1/2 H1,m- 1/2,it + k+ 1/2 H1,m,n+ 1/2 + k+ 1/2 H1,nn'/

-k-1/21 1 .n+12, k 1/H,mn 1/2,n - k- 1/2H1,m.n+ 1/2 - k~-1/2 H1,m,n- 1/2=

2 .t+ 1/( - -1/2 E1m1/, HT-I2Lm /,~- ,E. 1 + 2n

- 1-z ZY +kl k-1/2Ely,2-,1/

+ +1/2E (icni1/2 - k+1/ 2 El,m,n..i/2 + n2~ ,n+ 1/2 -k/El'ym,n- 1/2) (10)

Sampling the dual equation yields

k+ 1/2 Etm1/,, k+E,rn-1/2,ta + Ak+1/2ELx,r,n+1/2 + k+1/2Ex.rnl/

-k-1/2el.,nt+1/2,n - k-1/2EI,vn-1/2,n - k-1/2E,-1,mln+1/2 - k-1/2Ef~i,it-1/2

_ 2 ,flI%+1/2, - ,i-I/,&+k /H,vL+,/2,tt - k-1/2 !j,

24& ~C , -/2H k+ 1/ 2 H,.,,t- ,,+,, + kI-'12 Hz z

± %z (k+ I/2'H~mI/ +12Hl~x 2 -,7n,&- 1/2 -k-1/2 tn,nt+1/2) (1

We rewrite these discretized field equations using the TLM Hilbert space representation 151. We define the

electric field vector IFE) and the magnetic field v'ector IrEf) in the [fIilbert space Uw given by the cartesian
product of C12 , ?-4,, and 7-1:

Cw =C 2 ®U (12)

The electric field vector IFE) combines all electric field components of the wvhole discretized space. It is

given by

k kIE2ll,rn+I,2,nIk;t nn)(3
IFE)= +00: k IEZjI,rn&.i/ 2,n ;1,tt 7)(3

kj,L,mn=-*oo k[xtI-/,

kc IE1I,m,n+1/2

kcIEYII,YY,nt+1/2J

The magnetic field vector I Fm), defined by
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k [H.11+I/2,.,.
k [HylJ+-12,m.n

k HII,+-I/2,m,n

+ A0 : IllzII,m1/2,n
IFM) = Z E kI HzL,m+/ 2 ,n Ik;irn,mn) (14)

kJM,,=-o k tHII,._/2,,k [Hzlt,m+1/2,n

k IHy1L,m,,,_ /2k IHYI,.,,.+1/2
k [H-~T1,mn,._/2

k [HZ1L,,n,n+I/2

summarizes all magnetic field components of the discretized space. The twelve-dimensional complex vector
space C12 is the space of the vectors combining the twelve electric or twelve magnetic field components of
the TLM cell with the center at the discrete coordinates (1, m, n) at the discrete time coordinate k. Using
Dirac's bra-ket notation 1161, a system of orthonormal space domain base vectors Il, in, n) in the Hilbert
space lim is introduced. To each node with the discrete coordinates (1, in, n), a base vector I1, m, n) is
assigned. In the Hilbert space ?t, the base vector 1k) corresponds to the discrete time coordinate k.

The product space R-iw allows to describe the complete sequence of the discretized field by a single vector.
The orthonormal base vectors of 7,,®7"tt are given by the ket-vectors 1k; 1, in, n). The bra-vector (k; 1, in, n(
is the Hermitian conjugate of jk; 1, in, n). The orthogonality relations are given by

(kl;11,injnjjk2 ;12 ,n2,1n 2 ) = 6kk 2 61,(• 6 f1,m2 61A2 (15)

We define the time shift operator T which increments k by I i.e. it shifts the field state by At in the
positive time direction. Applying the time shift operator to a vector 1k; L, in, n), we obtain

T 1k; l, n, n) = Ik + 1; l, in, n) (16)

Choosing equidistant discretization in all three spatial directions

Ax==Ay=Az=Al . (17)

and using the Hilbert space formulation, eqs. (10) and (11) may now be written as

10, 0, 0, 0,1,1, 0, ,0, 0, ,1,i (1-T) IFM) =

= 10,0,0,0,1,-1,0,0,0,0,0-1,11 (1+ T) 2Zr'2 IFE) (18)

and

10,0,0,0,0,0,1,1,1,1,0,01 (1-'T) IFE)
= 0,0,0,0,0,0,,-1,1,1,-1,o0, 01 r IFM) (19)

Applying the traditional mapping between the wave amplitudes and the electric and magnetic field com-
ponents leads to wrong results (17, 181. To overcome these problems, we introduce the TLM waves with
respect to the TLM cell boundary surfaces. In each boundary plane seperating two TLM cells, a sampling
point for the tangential electric and magnetic field components Is chosen. As this mapping relates the wave
amplitudes and the electric and magnetic field components at the cell boundary, this mapping Is called

6



the cell boundary mapping. The cell boundary mapping provides a bijective one-to-one mapping betweenthe twenty-four electric and magnetic field components and the twenty-four incident and scattered wave
amplitudes at one condensed symmetric TLM node.

To describe the relationship between the tangential electric and magnetic field components and the wave
amplitudes [191, we introduce the local scattered wave vectors &.. The vectors b- are defined in a sampling
point in each boundary plane seperating two TLM cells. In the network model of TLM, this definition
corresponds to a definition of the vectors 6i at the end of the arm i of the condensed symmetric TLM node.
The vectors bi are perpendicular to the local outward directed vectors ii which denote the unit vectors
in the propagation direction of the scattered plane waves. Therefore the cartesian component of k. in the
direction of f4i is zero. The two nonzero cartesian components of bi are the two scattered wave amplitudes
of one arm of the TLM node. They are directed according to Fig. 4.
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Figure 4: A three-dimensional condensed symmetric TLM node.

With the local scattered wave vectors, the cell boundary mapping is determined by

6i = -1/2 (Q x 74 x + Z i4 xf) (20)

with i = 1,2, ... 6. In the same way, we introduce the local incident wave vectors di. The cell boun-
dary mapping between the electric and magnetic field components and the incident wave amplitudes is
determined by

i = 1/2 ( x + Z 4 x (21)

'L.. . ' * i .... i .. .. | "i .. I i I I -- I.... . ....... I II.... 7



As an example, we consider the arm 2 of the condensed TLM node 1, m, n at time k with the ports two

and four, Fig. 4. The local wave vectors are given by d2 = 10, a2, a4IT and O = 10, b2, b4IT, the vector If2
by i12 - 1,0, 0 1T. With

[k IErhI+1/2,m,n 1[k I H.TI,+ I/2,m,n1
k 1EI+12YJ% and ki = YI+1/2tn (22)
k IEzh1+ 1i 2,m,n k IHz I,+ /2,m,fl

we obtain from eqs. (20) and (21)

k [a2l,,,n = 1/2 (k IEylI+1/ 2 ,,,., Z- Z k H +1/,,,)

k 1a4J],,n,n = 1/2 (k [Ezj 1+1 /2 ,m,,, + Z k [nYJ1+1/2,Y,,,)

(23)

k [b2IL,lf,, = 1/2 (k [EYJ1+112 ,1n,,, + Z k [HZ l+1/2,,,t,,)

k 1b4Jjj., = 1/2 (k IEzb1+,/2,,,n - Z k IHY•I+1,/2,,,,n)

and
k [EYIl+ 1/ 2,,,, = k [a2 + b2jLj,, k [HYIl+l/2,,,&,,, = l/Z k [a4 - b4ll,,..,n

(24)

k [Ezl1+1/2,7,,, = k ja4 + b4 ]1.,,,,, k [HzJ!+1/2,n,,n l/Z k IN2 - a2l,,,a,n

respectively.

Evaluating eqs. (20) and (21) yields

!a) = 1/2 (IFE) + P 11M) )
(25)

Ib) = 1/2 ( IFE) - P JFk,) )

and
IFE) = ja) + Ib)

(26)
IF,%) P (Ia) - Ib))

where we have introduced the matrix

0 B 0 (27)
0 0 B

with 1 0 0 0

0 - (28)B= 0 0 -1 0 (8

-0 0 0 1

The property p 2 = 1 ensures that the cell boundary mapping is a bijective one-to-one mapping between
the twenty-four electric and magnetic field components and the twenty-four incident and scattered wave
amplitudes at one condensed symmetric TLM node.

The vector of all incident wave amplitudes

+00

1a) = kaim,,. Ik;1,m,n) (29)
k,ljln= --o8

v ... ... . ...... .. rllmmmm I~mlmmia~i' m • t~w' m m m m m m m m t8



Swith

kai,,,,, = k [al, a2), a3, a4, as, a6, GT, as,agalo,all, a2,Ln (30)

combines all incident wave amplitudes of the TLM mesh. In the same way, we introduce the vector of all
scattered wave amplitudes

+oo

Ib) = k ibi,.,n Ik;l,m,n) (31)
k,1,m,n=-oo

with

ibi,m,n = k[blb 2,b3,b4ib5,b6,b7,b8~bgblo~bibl2Jdmn (32)

The vectors 1a) and Jb) are vectors in the Hilbert space 'w.

Since all tangential electric and magnetic field components In each cell boundary surface are also specified
in the neighbouring cell boundary surfaces, only twelve field components per TLM cell are linearly inde-
pendent. Specifying e.g. all twelve incident wave amplitudes per TLM cell yields a complete description
of the field state. For each boundary surface, the wave amplitudes incident into one TLM cell are identical
with the wave amplitudes scattered from the neighbouring TLM cells. This relation is expressed by

1a) = r jb) and [b) = r Ia) (33)

where we have introduced the connection operator P given by

r = X(AI, 2 + A 3 .4 ) + Xt(A 2 , 1 + A 4, 3 ) + Y(A 5 ,6 + A 7 ,s)

+ yt (A 6 ,5 + A 8 , 7 ) + Z(A9, 10 + A 1 1 , 12 ) + Z t (AIO,9 + A 1 2 ,1 1 ) (34)

with the 12 x 12 (m,n)-matrix (Aj),,(,( = 65,, n 5j.

The shift operators X, Y, Z and their Hermitian conjugates X t , yt and ZP are defined by

X jk;l,m,n) = Ik;l + 1,m,n)
Xt 1k; 1, in, n) = [k; I - 1, in, n)
Y jk;l,rn,n) = [k;l,m + l,n) (35)
yt Ik; l, m, n) = Ik; l, i - 1, n)
Z1k;1,in,n) = Ik;1,ti,n + 1)
ZtPk;1,rn,n) = Ik;l,m,n-1)

The operators X, Y and Z shift the field state by one unit space interval Al in the positive I-, m- and
n-direction, respectively. Their Hermitian conjugates Xt, Yt and Zt shift the field state in the opposite
direction.

The connection operator r is hermitian and unitary:

r = rt = r-1 (36)

As we have already shown for two-diu rnsional TLM, regions with different material parameters may be
taken into consideration by the scattering operator S, boundary conditions may be considered via the
propagation operator r [51.

We apply the cell boundary mapping to obtain the discretized field equations for wave amplitudes and the
fundamental TLM equations, respectively. Choosing

2ZAtc 2ZoAtc
ZoA = I as well as ZA(37)
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and introducing the mesh pulse velocity cm = Al/AL yields

Zo = Z and _ 1 (38)
cm, 2

which is well-known from literature 131. Eqs. (18) and (19) yield two fundamental TLM equations for the
condensed symmetric node:

[0,0,0,0,1,-1,0,0,0,0,-1,1j 1b) -

1 I0,0,0,0,-1, 1,,0,0,0, 1,-11 T 1a) (39)

and

10, 0,0,o0,0,, 1,1,1,1,0, 01 jb)

- 0o,o0,o0,o0,i0, 0,1,,o, 01,T •a) (40)

In the same way, we proceed with the other four cartesian components of Maxwell's equations and obtain
another four fundamental TLM equations for the condensed symmetric node. With eqs. (10) and (37), the
six fundamental TLM equations are given by

Pb Ib) = T Pa 1a) (41)

The scattering matrix of the three-dimensional condensed symmetric TLM node, eqs. (48) and (49), is a
12 x 12-matrix. Therefore we need twelve fundamental TLM equations to determine the scattering matrix
uniquely. The six missing fundamental TLM equations for the condensed symmetric node are calculated
by using the derivatives of the spatial delta function as test functions.

Proceeding in the same way as demonstrated above yields the other six fundamental TLM equations for
the condensed symmetric node

PI 1b) = T P 2 1a) (42)

where we have introduced the operators

0 0 0 0 0 0 1 1 -1 -1 0 0
1 1 0 0 0 0 0 0 0 0 -1 -1
0 0 1 1 -1 -1 0 0 0 0 0 0 (43)

= 0 0 0 0 1 -1 0 0 0 0 1 -1
0 0 -1 1 0 0 0 0 -1 1 0 0
1 -1 0 6 0 0 1 -1 0 0 0 0

and

0 0 0 0 0 0 -1 -1 1 1 0 0

-1 -1 0 0 0 0 0 0 0 0 1 1
0 0 -1 -1 1 1 0 0 0 0 0 0

= 0 0 0 0 1 -1 0 0 0 0 1 -1 (44)

0 0 -1 1 0 0 0 0 -1 1 0 0
1 -1 0 0 0 0 1 -1 0 0 0 0

Eqs. (41) and (42) may be written in the form

MI 1b) = T M 2 1a) (45)

with

= P[ and Ma = 2 (46)
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Multiplying eq. (45) by MT, we obtain
1 b) =T S 1a) (47)

with the scattering matrix S given by

0 So S OT

SOT 0 T S 0  (48)

So SoT 0

where we have introduced

SO1 01 0 (49)

2- 0 0

The operator S is real, symmetric, hermitian and unitary. The scattering at all TLM mesh nodes is
connected with a time delay &t.

3 Two-dimensional TLM

With 0/0z = 0, Maxwell's equations are seperated in two independent systems of partial differential
equations for Ez, Ey, H. and H., Hy, E2 , respectively. The partial differential equations for H,, Hy and
E, are given by

-H Y 8H . = 1 aE2  (50)

ax ay Zoc at

aE2  Zo OH. (5)
ay c at

OE2  = Zo 0!! (52)
ax c at

For the derivation of the two-dimensional TLM method with shunt node, we expand the fields in

+00

E2(x, y, t) = E kEz,,,n Hk(t) Krn,n(X, y)
kmn-00

+00
H.(x, y, t) = E kH,',,n Hk(t) K,,-(X, Y)

k,m,n=-oo

+00

Hy(x, y, t) = hH•,. Hk(t) K.,n,(X, i)
k1,1&n=-00

(53)

with the expansion coefficientS kEgmn, kH,,,n and kHY,,,n. The indices m, n and k are the discrete space
and time coordinates related to the space and time coordinates via x = mAx, y = nAy and t = kAt, where
Ax, Ay and At represent the unit space interval In x-, yi-direction and the unit time Interval, respectively.
The rectangular pulse function Hk(t) is given by

Hk(t) = H(t - k) (54)

and the two-dimensional rectangular pulse function Km,n(x, y) shown in fig. 5 by

K,.,.(x, y) = H(.•- X m) H (E - ,n) (55)
2I

• :]1 I 1 . . . ... I .. .. .... Anl m lm m l --p• m , . i ,•, l ,~ l n l, ,. - ., ,-.



Koo(x,y)

Figure 5: The two-dimensional pulse function Ko,o(x, y).

At first, we insert the field expansions in eq. (50) and sample the field components with respect to space
using the function

rn m+ n x y rn-n)
L+..(x, y) H(x + y n(56)

2Ax 2Ay 2 2Ax 2Ay 2 (6

Ll,odxy)

y

Figure 6: The two-dimensional pulse function L,,o(x, yj).

The functions "m,.(x, y) shown In fig. 6, are squares in the x-yi plane rotated by 450 around the z-axis
with respect to the functions Km....(x, y). Sampling the field expansions using the test functions H&(t) with
respect to time, we obtain

4 k+ IEý,'. + kt+IE.n+I~n + k+ IE.'- 1,. + k+ IE4n,n+ i + k+ E~-1

-kz,-kE +~ -kE.- nkEz.,n+l -k =~-
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O - 2Lto k I m~,, + tkHm+l,a -- k+l m-l k~~,n
2AtZoe +t+ ,,_ =H

+ 2AZ~c (k+IH.,. + kH..-l - k+lHm,,.+ -•kH..+,) (57)+ AY/

We insert the field expansions in eqs. (51) and (52) and sample the field components with respect to space
using the functions Km,n(X, y) as test functions. We obtain

k+IEz,n,+l + kEm.,.+, - k+IE:.,. - kE•.. =

_ ayZo I + k + H + - k+IHmn+I - (58)
Atc

and

k+IEz,+l,n + kE-,+ k+, Ez,,,, - k E,,,,,, =

AXZo ( ,+,,,- +- (59)
A tc + ln +l +

All electric and magnetic field components of the TLM mesh at all time sampling points kAt are summarized
in the Hilbert space vector 15, 14J

+00

IF) = k jE", Z0 1o., ZoHYI,. Ik; in, n) (60)
kJ~,,n1n -00O

where Z is a wave impedance different from the wave impedance ZO of the free space. The complete
electromagnetic field state is represented by a single vector IF) in the Hilbert space KF = C3 D W4, , lit .
In the three-dimensional complex vector space C3 , the three electric and magnetic field components at
the discrete space coordinates (i1,7) at the discrete time coordinate k are summarized in the vector
k [Es, ZoH., ZOHyI,,. To each space sampling point with the discrete coordinates (ni,n), we assign a
base vector Imt,n). The set of vectors Im,n) is an orthonormal base of the Hilbert space R','. The time
states jk) are the base vectors of the Hilbert space Rt. The base vectors Ik; m, n) = 1k) ® Ima, n) fulfill the
orthogonality relations

(ki; mil, nl Ik2 ; i2, 72) =tkk 2 
6bk,,,.f2 6

L,. 2  (61)

Assuming a quadratic mesh with

Ax = Ay = AIl (62)

and defining the shift operator X and its Hermitian conjugate X1 by

X Ik;m,n) = Ik;m + 1,n) and Xt Ik; rn,7n) = Ik;m - 1,n) (63)

as well as in an analogous way, the shift operators Y and yt for the discrete space coordinate n and the
time shift operators T and Tt for the discrete time coordinate k, we obtain the operator equation

M 2(T, XY) IF) = 0 (64)

with

4(1 -T)(I +C,) (I +T)(Yt-Y) (I+T)(X-Xt)

M 2(T, X, Y) = (1 + T)(Yt - 1) (1 - T)(Yt + 1) 0 (65)

(I + T)(X t - 1) 0 (T - I)(Xt + 1)

13



where we have introduced Cl =. (x+ +xtYt) (66)

For the three-dimensional TLM method with condensed symmetric node, the cell boundary mapping 117,
181 is the correct mapping between the wave amplitudes and the electric and magnetic field components.
The cell boundary mapping relates the TLM wave amplitudes with the tangential electric and magnetic
field components in the tangential planes seperating the TLM cells. For the field components at the cell
boundary, we introduce the CBM values of the electric and magnetic field components. The CBM value of
a field component is defined at the cell boundary between two neighbouring space sampling points as the
mean value of the field components at these space sampling points. E.g. the CBM value E,.+ 1/2 is given
by

1Ei n+,/2n+ + Eta,.i) (67)

The error introduced by this approximation as well as the error introduced by the discretization of Maxwell's
equations is of second order since both approximations are linear.

Following 1141, we define the electric field vector IFE) and the magnetic field vector IFMi) as vectors in the
Hilbert space lw = C4 ®7"DR, ®7ot. The electric field vector IFE) combining all CBM values of the electric
field components of the two-dimensional discrete space at all time sampling points kAt is given by

k IE•jr,,,_i/2,+00) 1E dE irt+' " 1/2 mn) (68)
1 ,,,E.,= _ 1: 1E k;,,n, /

IE) -o k 1E2 r,,Az+ 1 1/2

IFM), defined by

k lH1l,,_11,,,

IFAf) = Z k Hy'uu"+1/2,n I k; m, n) (69)
k,,,, -oo k l,-1/2k I H -rI. ,,, a+ ,1/ 2

summarizes all CBM values of the magnetic field components of the two-dimensional discrete space at all
time sampling points kAt. As the impedance Z, the wave impedance of one of the four identical arms of a
TLM node is choosen. The relationship between the field components at the center of a TLM cell and the
CBM values of the field components may be written as

X+I 0 011 X +I1 0 0

IFE) = Xt + 1 0 0 1F') (70)
yt+l 0 0

and ad0 0 X+1

j~)=1 0 0 Xt +l1(1
IF) 2 0 Y+1 0 F)(1

0 yt+l 0

Inserting eqs. (70) and (71) in eq. (57) we obtain

(1, 1,1,11 (1 - T) IFE) (-,1,1,-1] (1 + T) 2ZAtI FM) (72)
ZAI

14



Multiplying eq. (58) by (1 + Y) and Inserting eqs. (70) and (71) yields

[o 0 -, 11] (1 +T) I [FE 0 -0 -, T) Z l F,,) (73)

Multiplying eq. (59) by (I + X) and inserting eqs. (70) and (71) yields

1 10 ](I+T) IE)- 1 1 0 0 1 (1 -T) Z.Z- I Fm) (74)

Adding eq. (58) multiplied by (Y - 1) and eq. (59) multiplied by (1 - X), we obtain

1 1 -1 -11] (I+T) IFE) [i' -1 1 -11] (l-T) ° FM) (75)
ZAtc

The mapping between the wave amplitudes and the CBM values of the electric and magnetic field com-
ponents is defined at the cell boundary and therefore called cell boundary mapping. It is given by [201

Ia) = - (IFE) - P IFM))
(76)

1b) = ½ (IFE) + P IFA))

and
IFE) = 1a) + Ib)

(77)
IF,%) = P ( Ib) - Ia) )

with the operator
1 0 0 0

0 -1 0 0 (78)
0 0 -1 0
0 0 0 1

and the Hilbert space vectors

+00

Ia) = E k[al,a2,a3,a4,IT1 , Ik;1, in, n) (79)
k,rnn= -00

and
+00

1b) = 1 klbl, b2 , b3 , b4ITtn Ik; tit, n) (80)
k,m,n= -cc

in the Hilbert space ?Nw. The vectors Ia) and 1b) summarize all incident and scattered wave amplitudes
of the TLM mesh at all discrete time sampling points kAt. The property P2 = 1 ensures that the cell
boundary mapping is a bijective one-to-one mapping between the eight CBM values of the electric and
magnetic field components and the eight incident and scattered wave amplitudes at one two-dimensional
TLM shunt node. At each boundary surface, the wave amplitudes incident into one TLM cell are identical
with the wave amplitudes scattered from the neighbouring TLM cell. This relation Is expressed by the
connection operator [51 via

1a) = r 1b) and Ib) =F ra) (81)

where r is given by
0 X 0 0

Xt 0 0 0 (82)
0 0 0 Y

00 Yt 0

15



Applying the cell boundary mapping, we obtain the discretized field equations for the wave amplitudes.
We choose 2Z0 ALC ZOAl

ZA =1 as well as ZAtC = 1  (83)

With the mesh pulse velocity c. = Al/At, eq. (83) yields

Zo = - and c - 1 (84)

which is well-known from literature Ill. Now, eqs. (72) - (75) yield

P1 Ib} - P 2 T 1a) (85)

with [I Ifl fi I izH
0 0 - 0 0 -1(86)P= -1 1 0 0 1 2 -1 0 0 (6

Multiplying eq. (85) by Pj- we obtain
b)= T S Ia) (87)

with the scattering matrix of the two-iJimensional TLM shunt node

sJ (88)

Note that the two-dimensional TLM series node can be derived in the same way by the priciple of duali-
ty 121].

4 Yee's FDTD Scheme

The finite-difference time domain (FDTD) method is the mathematical approach for the solution of partial
differential equations [22]. The partial derivatives are simply replaced by finite differences. In 1966, Yee
has first given a finite-difference time-domain scheme for solution of the Maxwell equations [7, 8, 9]. In
the FDTD method space and time are discretized with increments Al and At, respectively. The field
component placement in the FDTD unit cell is shown in Fig. 7. The side length of a unit cell in our
notation is 2A1.

In this section, we derive Yee's FDTD scheme with central difference approximations [7] by applying the
Method of Moments to Maxwell's equations. As expansion functions, we use pulse functions in space and
time. The field expansions of the magnetic field components are shifted by half an Interval in space and
time with respect to the field expansions of the electric field components. As test functions, we use pulse
functions in space and time, too, which is equivalent to applying Galerkin's method [4]. For simplicity, we
restrict our considerations to the free space. We expand the fields in

+00

k,l,m,n----oo

+00

(~t) = • k+l/H,,,+1/ 2 ,n+I/2 Hk+I/ 2 (t) HL(X) H,+1l2 (Y) H,•+/ 2(z)
kjl,m,n=.--o

(89)
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NODE(ij, k)

Ezz

y E.

Figure 7: Field components in the FDTD unit cell.

k Eilm and kHrmn, with 14 = x, y, z are constant expansion coefficients. We obtain the expansions for
Ey(Y, L), E.(:e, t) and Hy(:e, t), HY t), respectively, by cyclic permutation of x, y, z and Ax, Ay, Az.

Choosing Ax = Ay = Az =Al and proceeding in the same way as above with all components of Maxwell's
equations yields Yee's FDTD scheme with central difference approximations 171:

k+1EI+1/2,rn,n -kEl+1/2rnn

-SZ 0 (k /11+2/2,Yr&+ /2,t& - k+ I/2"L,+ I/2,m,- 1/2,, + k+ 1/2111+ l/2,"&,n- 1/2 - k+1/2H"L+1/2,mn~n+1/2)

k+1EIm+i/ 2,n - kEl.m+1/2,n

-sZO (k+ 112 Hrx 1/2,n+ 1/2 - k+ 1/2 Hi,.+ 1/2,n- 1/2 + k+ 1/2 HIL 1/2,,n+ 1/2,ni - k+ 1/2 H1+ 1/2,,n+ 1/2,n)

k+IEI~mnn+h/2 -kEl~m,n+1/2

- Z sz k+1/2HIrn. 1/2,n+1/2 -k+/Tr+I/,- /k+1/2+12 1 L32m'+/ - k+ 1/2HI 1/2,m,Y&+ /2)

~+1/2M~m1/22,nI1/2-+k k/2H1rn+1/2,n+I/2

k+1/2H"1+.I/2m,n+1/2 - k-1/2 1HI.+1/2m,n+1/2

- o m+ (k 1/2,rn+I -kE+/,m,n+I/, + kEz,+Irn,,1+2 - kEz ,,,,n+1/2)

k+ /11H1+ 1/2,.~n+ 1/2,n-k-1/H. 1/2,m+ I 1/2,~

= #(kEI+1/2,.+,n - kEL+I/2,rn,nl + kErn+h",Y+/ 21  - kEr+,a+,n)(0
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where we have introduced the stability factor s = cAt/Al

We define the field vector IF) in the Hilbert space 7w = C4 0 7m :

+0o

IF)- k kIE. Ej,, Z4Z , ZoHI , ZoHZ,,,.,Hz Ikm 1 Yk;L,m,n) (91)
k,1,Y,•rz=--o

We define the half shift operators Xh and its Hlermitian conjugate Xt by

Xh IVk in, n) = Ik; 4 11/2, in, Yn and Xtj k;l,in,n) Ik; - 1/2, n,n) (92)

and in an analogous way, the shift operators Yh, Yt, Zh and Zt for the spatial coordinates m and n.
In the same way, we introduce the half time shift operators Th and iLs Hermitian conjugate Tt. From
eq. (90), we obtain the FDTD equation

M 1 IF) = 0 (93)

with

Xt 0 0 0 T)XtDt t XtXD
o.t ,t l-it ,,t D 0 Tt Yt-Dt

h, hn tt h, -h -'Th Zh gz
0 t 1 D Z t t Dt itt tt 0t (94D
0, 0 qZTJD h ~ D hi tThthtZDh (94)ot YZ D, Y Zt Dt 1Y Z Di 0 0h h h -h y -h "h *'

Xt z 0Dz 0 0 Xt Zt Dt 0Xh Yh Dz ht h Dh h t yD
Xt Y'DY X Yt Dt 0 0 0 -1 XtYtD

h h h h zah h ttj
where we have used the abbreviations

D., = X'h -- Xh Dy Yth - Yh D, = Zt , D • Th (95)

For two-dimensional FDTD, with O/Oz = 0, eq. (90) yields

k+IEn,n - k = SZO k+I/214r.nnI/2 - k+1/2Hm,,1+ 1 /2 + k+1-2H- k+1/2Hm"l/I,,l

k+I/2Hrn n+l/2 - k-I/2 --rn+//2 70 (kEi - k l/,n+l)

M )•+/H•l'•- k-.1/2H•+ll/" - (o cE't"n•' - kE•..) (96)

for the system of partial differential equations for H,, Hy and E, if we choose a quadratic mesh with

AX = Ay = Al.

We introduce the Hilbert space vector [5, 141

+00

[F') = • •[Ez,ZOHnZoHyrn,n I[k;m,n) (97)

to represent the complete electromagnotic field state in the Hilbert space N4' C3 ® N m o N t. Eq. (96)
may be expressed by the operator equation

MI(Th, X,Y, ) IF') = 0 (98)

with
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~T)tT, -T') Tt Yh -Yt) T't(X - Xh)

M(T, X,, Yh) yt Yh - t Yt (r - Th) o (99)

h X h(x,-Xh) o 'Xh(Th-T)h

5 The Dispersion Relations of FDTD and TLM

5.1 The General Dispersion Relation of TLM

Eliminating the scattered wave amplitudes from eqs. (33) and (47), we obtain the eigenvalue equation

(r T S - 1)la) = 0 (100)

The TLM algorithm and the properties of the discrete mesh are completely described by the scattering
matrix and the propagation matrix. Diagonalizing rs, this information is contained in the eigenvalues
and the eigenvectors of rs. Therefore we may calculate the dispersion relation of the discrete TLM mesh
from the eigenvalues.

We calculate the eigenvalue equation in frequency domain. The field state vector 1a) in the Hilbert space 1tw
describes the complete time evolution of the electromagnetic field in dicretized space and time. Calculating
the scalar product of the vector 1a) and the base vector Ik) of ht yields the complete field state la(k)),. =

t (k Ia),m®t at the time kAt. The subscripts t and m of the Hlilbert space vectors indicate that the vectors
are an element of the Hilbert space 14 and W,4 , respectively. If it is obvious to which space the vectors
are belonging, these indices will be omitted.

To calculate the complete field state in frequency domain, we introduce the base vectors

+00

+00= Z e Ik), (101)
k=-oo

with the normalized frequency Q = 21rAtf where f represents the frequency. For the scalar product of

la),,t and IQ)t, we obtain

+00 +00

la(fTl)),, , (f? Ia),,, = , (k 1a),, .. ka=,.,, ,.e- ' kf, m, n)m (102)
k= -00 kL,?&,,L=--o

The vectors la(Q)).m and Ia(k)),,1 are connected by a Fourier series. Multiplying eq. (100) with the Hilbert
space vector If?), we obtain

(r s - eO) Ia(Q)),,, = 0 (103)

representing the general dispersion relation of TLM. The eigenvectors Ia(fQ)),m are the harmonic field
solutions for the normalized eigenfrequencies Q. The eigenvalues of 1S are calculated by

del(r s-&' 0 ) =0 (104)

This result is also contained in a different representation in the work of Nielsen 112, 131. However, Nielsen
gives numerical solutions of eq. (104), whereas we calculate the dispersion relations algebraically. As the
mapping between the electric and magnetic field components and the wave amplitudes has not beeing
used in the derivation of the general dispersion relation, the method may be applied to any TLM method
provided it is possible to diagonalize the matrix I'S.
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5.2 2D-TLM and 2D-FDTD

We have shown that in two-dimensional TLM as well as in two-dimensional FDTD, there are three linearly
independent field components per TLM cell. To apply the cell boundary mapping, we have introduced four
CBM values of the electric and magnetic field components per TLM cell. This corresponds to the introduc-
tion of an additional degree of freedom and an additional solution for the two-dimensional TLM method,
respectively. We demonstrate this by investigating the dispersion characteristics of two-dimensional FDTD
and TLM.

In order to investigate the dispersion characteristics of FDTD, we calculate eq. (98) in frequency domain.
Forming the inner product of (QI and eq. (98) and considering

Th •Q; ti, n) = e- 0 12 IQl; ti, n) (105)

we obtain
MI(e-/1 2,Xh,Yh) (P IP) =0 (106)

This procedure corresponds to a seperation of variables, which is justified because IQ) represents a maximal
orthonormal set for the Hilbert space ?t [231. Eq. (106) implies

detMl(e 1e/ 2 ,Xh, Yh) = 0 (107)

for any non-trivial solution of FDTD. As demonstrated in 1141, the solutions of eq. (107) may be calculated
as

A, =C+ V'T A 2 -C- V'i7 A3 = 1 (108)

with
C:=2 (X + Y +Xt + Yt - 4) + 1 (109)

The solutions of eq. (107), the eigenvalues Ai = 00 are operators in H,,. These operators represent the
three possible non-trivial FDTD solutions: A, and A, contain the dispersion relation of the propagating
solutions of a FDTD mesh, a wave propagating in positive and negative space direction. A3 represents
the non-propagating solution of a FDTD mesh: A3 = 1 implies P2 = 0 which corresponds to a stationary
solution representing the magnetostatic case.

For the two-dimensional TLM method, eq. (104) yields

A1 = C, + C- 1 A 2 =C, - VC -
(110)

A3 = 1 \4 = -1

with C, according to eq. (66). The eigenvalues A> represent the four possible non-trivial TLM solutions: A,
and AX again contain the dispersion relation of the physical solutions of a TLM mesh, a wave propagating
in positive and negative space direction, for which we obtain the dispersion relation by calculating A, and
A2 in the wave vector domain. We introduce the base vectors

+00IX, '7),,n = E• e~X,)+,) Im, n),,. 11

n,n-=-oo

with the normalized wave vector components X = 21rAlk, and q = 21rAlky. The wave vector k has the x-
and y-components k, and ky. (X, t/la(Q)) and (m, nla(P)) are connected by the Fourier series

+00

(X,,ila(1))) = F e-11")'"" (m, nja(0)) (112)
mn= -0o
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From eq. (110), we obtain the dispersion relation

co1s(Q) = - (cosw() + cos(,)) (113)
2'

Note that for the two-dimensional TLM method with series nodes, we obtain the same four operators Ai
and thus the same dispersion relation. For small arguments, using cosx ; I - x2 /2 yields

At22 = f2 = + k2(114)

This is the dispersion relation of a two-dimensional wave equation with the wave propagation velocity
c = c./V2. The mesh pulse velocity c.,, = AI/At represents the propagation velocity of the TLM wave
amplitudes in the mesh. The mesh pulse velocity has no physical interpretation. Only the waves resulting
from the superposition of the mesh pulses give an image of the physical reality.

Since A3 = I implies 9 = 0, A3 corresponds to a non-propagating, stationary solution representing the
magnetostatic case. Note that choosing s = 1/VF for two-dimensional FDTD, the eigenvaiues A,, A2
and A3 are identical for two-dimensional FDTD and TLM. A4 = -- I implies Q = ir: T'ie eigenvalue A4
corresponds to an oscillating spurious solution.

We investigate the discrete field equations for the electric and magnetic field components at the center of

a TLM cell used in the derivation of two-dimensional TLM. Eq. (64) implies

detM 2 (e, X, Y) =0 (115)

for any non-trivial solution. We calculate the solutions of eq. (115) and obtain the eigenvalues A,, A2
and A3 as in eq. (110). Choosing s = 1/v\r, the discretized field equations, eqs. (64) and (65) have the
same eigenvalues as two-dimensional FDTD. Since two linear mapping algorithms are equivalent if the
transformation matrices describing the mapping algorithms exhibit the same diagonal form, we conclude
the equivalence of two-dimensional FDTD for s = I/V2- and the linear mapping algorithm described by
eqs. (64) and (65). The mapping of the three field components at the center of a TLM cell on the four
CBM values per TLM cell introduces an additional degree of freedom and a spurious solution, respectivly.

5.3 3D-TLM and 3D-FDTD

For the three-dimensional TLM method with condensed symmetric node, we obtain the operators 115!

A , = vA + vrB_ A 2 = - ýA + JB

A3 = •,A-_V1 A 4 = _/'Av (116)
A3 = \/ A6B'\ = - 1A- F

A5 =\6

with

A I (XY + XZ + YZ + XtYt + XtZt + YtZt 4)

+ (XYt + XZt + YXt + YZt + ZXt + ZYt) (117)

and
B (XYZ + X + Y + Z)(Xt + Yt + Z± + XtytZt)(A- 1) (118)

The operators A7 to A,, are identical with A, to A6 . The operator A6 corresponds to a non-propagating,
oscillating spurious solution, the operator A5 to a non-propagating, stationary solution representing the
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electromagnetic and magnetostatic case, respectively. The operators A, to A4 correspond to the propagating
solutions of a mesh of condensed symmetric TLM nodes. We calculate the dispersion relation for the
propagating solutions and introduce

lx. ,w Z ,+ fi, in),,• n~(119)

with the normalized wave vector components X = 21rAlk-, W? = 21rAlk and • = 27rAlk,. The normalized
wave vector k has the x-, y- and z-components k,, ky and k2 . Again, (X, 17, ýa(Q)) and (L, m, nla(Q)) are
connected by a Fourier series. In the wave vector domain, eq. (116) yields

Cos 2(Q) (cos(X) cos(1) + cos(X) cos() + COS(71)cs() + 1) (120)

For small arguments, using cosx ; 1 - x 2/2 yi•!ds

4 -2 P k2 2+ 2+ kz2  (121)

which is equivalent to the dispersion relation of a three-dimensional wave equation with the wave propagati-
on velocity c = c,./2. The dispersion relation of the three-dimensional condensed node has another solution
for small frequencies. We use cosx ; 1 - x2/2 to approximate the left side and cos(x + 7r) ; -1 + x2/2 to
approximate the right side of eq. (120). In this way, we calculate the low-frequency dispersion relation of
the spurious modes propagating in a mesh with condensed symmetric TLM nodes 1121. Again, we obtain
eq. (121): The spurious modes have the same low-frequency propagation characteristics as the physical
modes.

In the two-dimensional case, we have no propagation in z-direction. With • = 0 eq. (120) yields

cos(Q) =Icos 2 ) +cos( 7)) (122)

which is different from the dispersion relation of the two-dimensional TLM method. With cosx ; 1 -x 2 /2,
we obtain 4 At2 -2

4-Af2 = kX2 + k2y (123)

This is the dispersion relation of a two-dimensional wave equation with the wave propagation velocity c =

cm/2. In contrast to the three-dimensional dispersion relation, eq. (120), the two-dimensional dispersion
relation, eq. (122) has no other solution for small frequencies so that no spurious modes occur.

The FDTD equation implies
detMI = 0 (124)

for any non-trivial solution of FDTD. The solution of eq. (124) yields the dispersion relations of all non-
trivial solutions in a FDTD mesh. The calculation of the dispersion relation in FDTD is performed in the
same way as in TLM where we calculate the eigenvalues from eq. (104).

Calculating eq. (124) in frequency- and wave vector-domain in the same way as described above yields the
dispersion relation for the propagating FDTD solutions:

cos(Q) = s2(cOS(X) + cos(1) + cos(ý)) + 1 -3s 2 (125)

which may be rewritten in the form [101

sin 2 (f(/2) = 82 (sin2(X/2) + sin 2 (,(/2) + sin2((/2)) (126)
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Eq. (125) has a solution for all X, q and t if

182( sin2(X/2) + sin 2(?7/2) + sin2(t/2))) :5 1 (127)

is satisfied. This yields the stability condition

8 1< (128)
-713

To compare the FDTD dispersion relation with the dispersion relation of the three-dimensional TLM
method with condensed symmetric node, we choose s = 1/2. From eq. (125), we obtain

cos(Q) = -1 (cos(x) + cos(r)) + cos(t) + i) (129)

The low-frequency approximation yields the dispersion relation of a three-dimensional wave equation with
the wave propagation velocity c = c./2. In contrast to the three-dimensional TLM method with condensed
symmetric node, no other low-frequency solution exists.

To compare the FDTD dispersion relation with the dispersion relation of the two-dimensional TLM method,
we have to choose s = I/v/ and 4 = 0. In this case, we obtain the same dispersion relation for the two-
dimensional FDTD and the two-dimensional TLM method. This fact has already been proved by Simons
and Bridges 1241.

6 Conclusion

In the case of cell boundary mapping, the three-dimensional TLM method with condensed symmetric node
uses twelve wave amplitudes and twelve linearly independent field components per TLM cell, respectively.
In this case, the number of wave amplitudes per TLM cell corresponds to the number of degrees of freedom
per TLM cell. Three-dimensional FDTD method, the discretization scheme contains only six linearly
independent field components per unit cell 171. If we are comparing the two methods, we have to use
discretizations with the length interval ratios 1 : r2 between FDTD and TLM in order to obtain the same
number of degrees of freedom for a given problem.

As in the two-dimensional FDTD method, in the two-dimensional TLM method, there are three linearly
independent field components per unit cell. However, the two-dimensional TLM method uses four wave
amplitudes and four field components per TLM cell, respectively, in the simulation of a two-dimensional
scalar wave equation. The additional degree of freedom in the two-dimensional TLM method compared
with the two-dimensional FDTD method corresponds to a spurious solution. This spurious solution is a
non-propagating solution oscillating with the frequency 1/2At.

The dispersion analysis of TLM and FDTD prooves that the propagation characteristics of the two-
dimensional TLM method and the two-dimensional FDTD method with central difference approximation
are indentical. The dispersion relation of the three-dimensional TLM method with condensed symmetric
node and of the three-dimensional FDTD method with central difference approximation are different.

In the FDTD mesh, only one low-frequency solution is propagating. In the three-dimensional TLM method
with condensed symmetric node, two low-frequency solutions of the dispersion relation corresponding to

• :[kz,k_,kzf and k = [ir/(2A1) -k 1,r/(2Al) -kyir/(2A1) -kz]T exist. Spurious modes with a
wavelength in the neighbourhood of 2A/ have the same propagation characteristics as the physical modes.
Due to the ambiguity of the low-frequency solution in TLM with condensed symmetric node, the three-
dimensional FDTD method exhibits advantages over the TLM method with condensed symmetric node

( with respect to the dispersion characteristics.
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Calculating a two-dimensional problem in a three-dtimensional TLM mesh with condensed symmetric no-
des, the three-dimensional mesh can be replaced by a two-dimensional TLM mesh with nodes which have
short-circuited stubs of the length A1/2 in the direction of the third dimension [ll. These stubs compen-
sate for the higher mesh pulse velocity in the three-dimensional mesh in comparison with the mesh pulse
velocity of the two-dimensional TLM method. At low frequencies, the three-dimensional mesh for two-
dimensional problems with a mesh pulse velocity c, = 2 c behaves in the same way as a two-dimensional
mesh with cm, = V( c. However, the dispersion characteristics of the three-dimensional mesh with conden-
sed symmetric nodes differs also for two-dimensional problems from the dispersion characteristics of the
two-dimensional mesh. This fact indicates that two-dimensional TLM and three-dimensional TLM with
condensed symmetric node are numerical methods with a different relationship to Maxwell's equations.

This work has been supported by the Deutsche Forschungsgemeinschaft.
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ABSTRACT

This paper provides an overview of new developments, recent progress, and future
trends in modelling and simulation of electromagnetic structures with the TLM
method. The following aspects are featured: New theoretical developments, high
performance absorbing boundaries, computer implementation and validation, and design
and optimisation techniques using TLM.

1 INTRODUCTION

In recent years, discrete time domain modelling of electromagnetic fields has reached a
high level of sophistication. The prominence of time domain methods is due partly to
the increasing number and complexity of problems that have been successfully solved
with this approach, and partly to the rapid growth in computer power available to
practitioners. These developments have attracted a large constituency of researchers
eager to join this exciting new field, a trend that has resulted in a rising tide of new
ideas, publications, and computer software. The present Workshop is a case in point.

Finite Difference - Time Domain (FD-TD) methods are extremely popular because they
are obtained by directly discretizing Maxwell's or Helmholtz's equations and thus, evolve
naturally from classical electromagnetic theory. Among them, the approach formulated
by Yee in 1966 [11 is very popular among practitioners in the areas of electromagnetic
.cattering and propagation. It is based on a discretization of Maxwell's two curl equations
which are solved stepwise in a leapfrog fashion. In contrast, Transmission Line Modelling
(TLM) - invented by Johns and Beurle in 1974 [21 - employs a spatial transmission line
network or mesh, ie. another physical system; its wave properties emulate those of
continuous space as the mesh discretization approaches the infinitesimal limit. Time
domain modelling is performed by exciting the TLM network with Dirac-like voltage
impulses and tracking their scattering throughout the network on a computer.

In all time domain methods, frequency domain characteristics are extracted from the
time response by Fourier transform.

There are many similarities between FD-TD and TLM methods, but the main difference
is that FD-TD schemes employ discretized differential (or integral) equations, while TLM( algorithms are based on a scattering formulation.

TLM algorithms have been described extensively in the literature. In the following, we
will thus focus on more recent generalizations of TLM algorithms, on the computer

• • llm q~l[m mNI II nunIlllll l ll lnlkl~l• -,,I
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implementation and validation of TLM, on absorbing boundaries and finally, on
microwave design and optimisation techniques using TLM.

2 NEW THEORETICAL DEVELOPMENTS IN TLM

2.1 Rectangular Mesh TLM Algorithms

One of the limitations of traditional mesh algorithms is their restriction to square
(in the 2D case) or cubic elementary cells. The aspect ratio of cells can, of course,
be changed within limits by introducing impulse-delaying techniques in the form of
stubs or impulse storage, but these techniques require additional computer resources
and introduce unwanted dispersion errors. This is a drawback when modeling guiding
structures in which the transversal and longitudinal components of the propagation
vector differ considerably in magnitude. When discretizing such structures for numerical
modelling one would thus prefer a scheme which allows for different discretization steps
which are commensurate with the required resolution of the fields. Consider, for example,
a microstrip line with rather small transverse dimensions and fine features such as finite
metallizaton thickness and thin dielectric layers. In such a case the discretization must
be much finer in the transverse than in the longitudinal directions. Traditional TLM
schemes which are based on square mesh size [21, [3] become very uneconomical in such
cases because they impose essentially the same mesh dimensions in both transversal and
longitudinal direction.

This has motivated the development of new TLM models with mesh cells of arbitrary
aspect ratio [4]. In two space dimensions, isotropic propagation space can thus be modeled
by a rectangular anisotropic mesh as well as by a square mesh. To illustrate this point,
Fig. 1 shows equivalent square and rectangular 2D TLM shunt meshes side-by-side
(aspect ratios a = l and a = ½ , respectively). The same ideas have been applied to 3D
TLM schemes and will be published shortly.

am-

-Ham

Al
Ax

AZ

Square Mesh a t=1 Rectangular Mesh (a = 1/2)

Fig. 1 Square mesh (a =1) and equivalent rectangular TLM mesh (a = ½). The aspect ratio is
defined as a = AA/Az

I nn •>' ia i l m l-i•i .. ..- ... • . .
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I The desired properties of the rectangular mesh are the following:

Property 1: Impulse Synchronism:

The velocities of impulses on the dispersionless link lines must be such that the transit
time At is the same for all lines. This implies that the line velocities must be proportional
to the line lengths:

v_ k, Az, -. -A=Z 1

where a is the aspect ratio of the rectangular cell.

Property 2: Isotropic Wave Properties:

In the infinitesimal limit (Ax, Az < A), the plane wave network velocity Vn must be the
same in z and z-directions (as opposed to the line velocities v, and v, which are different
in view of the synchronism requirement). This implies:

vnr = vn and knx = knz (2)

This property must hold for all aspect ratios a. (At higher frequencies where Ax, Az are
no longer very small compared to A, these equalities fail due to dispersion errors which
occur as a result of the finite mesh size).

It can be shown that both conditions are satisfied if the inductances and capacitances
per unit length, and the characteristic impedances of the mesh lines have the following
ratios:

L, C. I Z0OX YO' V = 2

TC2  
3  ZYo, -(3)

The general dispersion relation which governs the relationship between the propagation
vectors in the network (k,,, kn,) and in free space (ko), is

cos(knAx) + a 2 cos(k, 2 Az) = 2cos(koAl) (4)

where At is the equivalent square mesh parameter defined as

AI=Ax 2 =AZ 12 (5
1+ 2  (5

The dispersion for arbitrary propagation directions is illustrated in Fig. 2 (dispersion
circle). The magnitude of the normalized propagation vector is plotted vs. the angle it
forms with the z-axis. In the infinitesimal limit, the locus described by this vector is the
unit circle. However, for a raher coarse discretization of Az/A = 0.15 the vector becomes
larger in the axial directions, and more so along the longer mesh dimension Az. For
comparison, the same function has been plotted for the "equivalent square mesh" defined
in Eq. (5) above. Note that there is no dispersion when the propagation vector forms
an angle 0 = arc tan • with the :-axis. This can be verified by analyzing Eq.(4). For a
square mesh (a = 1) this angle becomes 450 as expected.
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0.4.
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- Equivalent square mesh

Rectangular mesh (a 0.5) "k-

Fig. 2 Dispersion in arbitrary direction in a square and in a rectangular mesh (a = 0.5, Az/Ao = 0.15)

It is thus possible to define a family of rectangular mesh elements which all have the same
impulse transit time and identical phase velocity in all directions. Their dimensions all
satisfy Eq. 5. Fig. 3 shows such a family of equivalent mesh elements. Unfortunately,
only one of these elements can be used at a time to discretize a homogeneous structure,
because different elements do not fit together geometrically. This leads to the need for
additional stubs to equalize phase velocities in elements of different aspect ratios, as
discussed by AI-Mukhtar and Sitch [5], which have either the same width or the same
length so that they can be connected together.

Az

Ax
Ax a=-

Ax=Az=A I a= Ax- 1
AZ=

Ax
a=- L= 1/2AZ

AxS.lAo't = 1/4
_.3Fmlfetnuaehlmnshvn imAz

Fig. 3 Family of rectangular mesh elements having identical impulse transit time and phase velocity
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9 2.2 Modelling of Layered Inhomogeneous Dielectrics

So far we have only considered the modelling of homogeneous media by a uniform
rectangular mesh. We will now extend these concepts to inhomogeneous structures.
In particular, we consider guiding structures which are uniform in propagation direction,
but contain two or more dielectric layers. In such structures, the propagation vector
tangential to the dielectric interface is the same in all subregions, but different in normal
direction. It follows that the discretization in tangential direction should be the same
in both media, while the normal discretization should be finer in the higher permittivity
region.

Consider, as an example, the two-layer structure in Fig. 4.

Oc I Medium 1

Interface

Medium 2
•2 E 0 Er

Fig. 4 Rectangular mesh discretization of a two-layered dielectric

We will now determine the required mesh aspect ratio a2 in medium 2 as a function of
the aspect ratio a, in medium 1 and the relative dielectric constants in both media.

Again we want to ensure that the network velocity is isotropic in both sub-meshes and
equal to c/iV/ and c/v 7/-,., respectively. Thus, for propagation in x-direction we have:

1 _c

in medium 1: -V/ (6)

1 2 c

in medium 2: Vnz, = v,, 7 - (7)

Similarly, for propagation in z-direction we have:
1 _c

in mediun I : ?n, = (8)1 + i. N

72=
in medium 2: v,,,, =' c•r (9)
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As Fig. 4 indicates, the line velocities v, and v, must be equal in order to preserve the
impulse synchronism. Thus, Eqs. (8) and (9) yield

1+ 71.,-(r 
(10)

Hence, the relative permittivity of the dielectric determines the aspect ratio a2 in the
dielectric once a, has been selected, and vice versa. Note that this apprcach permits us
to model inhomogeneous layered dielectrics without the use of stubs. Furthermore, since
the transverse mesh size is reduced in the electrically denser medium, dispersion normal
to the interface is reduced accordingly.

We still must ensure that the interface condition is satisfied by this model as well. This
amounts to determining the characteristic impedances of the x-directed mesh lines, Zn0,
and Zo,., in such a way that the network intrinsic impedances Zn,: and Z,,, have a ratio

Zn1,, _= (11)

where we have assumed that both subregions have the same permeability Yo, and
subregion I is free space. Since these impedances are defined in both regions as follows
[4]:

=o. L- (12)

and
Zn: = (13)

z = C=(1 +a2)

we can write in view of Eq. 10 that

Zo ., _ (14)

which means that the impulse scattering at the interface must be accounted for in the
algorithm ii a way similar to that described in [6] for dual modelling of inhomogeneous
structures.

3 HIGH PERFORMANCE ABSORBING BOUNDARY CONDITIONS

In order to exploit the full inherent bandwidth of a TLM simulation, high performance
absorbing boundary conditions are crucial. "High performance" means that such
boundaries must be numerically stable, and capable of absorbing hybrid fields over a
very wide frequency range with a very low return loss. Two types of boundary conditions
have been developed and tested extensively for TLM applications: a) Multi-modal Johns
matrix absorbing boundaries for separable structures such as homogeneous waveguides
[7]; b) Second and third-order one-way boundary conditions based on Higdon's scheme
for non-separable structures [8],[9]. Examples are inhomogeneous waveguides such as
microstrip, finline and coplanar lines, or antenna problems.



OP 3.1 Multi-Modal Johns Matrix Absorbing Boundaries

The method of absorbing the dominant mode in a waveguide using the numerical
convolution of the incident impulses at the center of the waveguide with a modal
impulse response of a semi-infinite waveguide has been described in detail in [61,4101, and
implemented in the 2D-TLM simulator software included in [6]. This is possibU, because
in uniform waveguides with homogeneous dielectric the transverse field distribution is
independent of frequency and hence, of the time beiiaviour of an electromagnetic signal.
This approach can be extended to higher order modes as well. In a linear environment,
an overmoded signal can therefore be separated into modes which may be absorbed
individually by an appropriate boundary condition. The dominant and higher order
modal impulse responses (modal Johns matrices) are determined either by a recursive
TLM analysis of a waveguide slice [10], or by discretizing the analytical Greeni'. function
of the structure (if it is known). The latter approach will be discussed in more detail
later in this Workshop [11]. To this end the field incident upon the boundary is spatially
Fourier transformed to obtain the amplitudes of the modes contained in it. Each modal
impulse stream , then convolved numerically with its corresponding Johns matrix term,
and the result is recombined and injected back into the TLM computational domain at
the bour ,ary [7]. The process is schematically represented in Fig. 5.

1
2 spa1 *JM1

3
4 Fourier2 * A

transform

N P * impN

TLM Transmnwion Lin3s Modal Transmission Lines

Fig. 5 Network representation of the transformations between the TLM transmission lines in the
physical structure and the fictitious uncoupled modal transmission lines which are terminated by modal
Johns matrices

1.0

0.96 S 23 at 34

;7 0.&61atj

S0.45

S0,3 a d=a/2

01-

26 28 30 32 34 36 38 40 42

Frequency in GHz

Fig. 6 Scattering parameters of an inductive iris in rectangular waveguide using single-mode Johns
matrix ABC's at reference planes J, and multi-mode Johns matrix ABC's at Jm.
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Since the modal Johns matrix is diagonal, this procedure is extremely efficient.
Furthermore, such a boundary may be placed very near a discontinuity since it absorbs
higher order modes even if they are below cutoff. In this way the computational domain
can be dramatically reduced (typically by a factor ten) in return for inclusion of a few
higher order modes in the boundary model. Fig. 6 demonstrates such an arrangement
and shows S-parameters computed for an inductive iris in a rectangular waveguide [7].

3.2 One-Way Absorbing Boundary Conditions

Structures with inhomogeneous cross-sections such as partially dielectric-filled
transmission lines cannot be terminated in this way since the modal transverse field
distributions are frequency dependent. Structures of this type are best terminated with
absorbing boundaries modelled by one-way equations known from Finite Difference -
Time Domain models. We have adapted Higdon's scheme [12] for TLM applications.
However, we apply the boundary operators to the reflected impulses rather than the
total field values in front of the boundary. In the 3D Condensed Symmetrical Node
scheme, it can be applied simultaneously to both polarizations of the boundary arm,
resulting in the boundary condition being imposed simultaneously on the tangential
electric and magnetic fields (similar to the principle of superabsorption known from FD-
TD approaches). One of the principal problems affecting one-way boundary conditions
in Symmetrical Condensed Node TLM is the presence of low-frequency spurious modes
which are excited at discontinuities and which are amplified by the boundary operators
due to their high spatial frequency. We have found that the numerical stability of the
differential boundaries could be considerably improved by a judicious determination of
their characteristic parameters [8].

The performance of a third-order Higdon-type absorbing boundary in a microstrip line
is demonstrated in Fig. 7.

0c c -2 0 • . .. . . . . .i . . .. .. .... . .. . ........ ... ..... ... . . .... .. .• . .. ... .. . . . . . . . . . . . . . .

-- 30-

"-4 0 . ... .. ..... .........

-50

60
0 20 40 60 80 100 120 140 160 180 200

FREQUENCY (GHz)

Fig. 7 Return loss of a third-order Higdon absorbing boundary condition in an open microstrip with
the following characteristics: c, = 10.2, w = 0.508 mm, h = 0.635 mm).

The boundary has a return loss better than 30 dB from 0 to 200 GHz, a range that exceeds
by far the dominant operating range of the line. It is thus appropriate for absorbing very
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9 short transients and for nonlinar modelling where higher harmonic frequencies must be
properly terminated. Such boundaries also work well in waveguides of homogeneous cross-
section, and they may be used as free-space radiating boundaries in antenna modelling
[9]. Fig. 8 shows the return loss of a microstrip patch antenna computed with variable-
mesh SCN 3D-TLM and employing a stabilized second order Higdon absorbing boundary
(see 191 for details of the computation]. The TLM result is in good agreement with results
obtained by Wu et al. [131 with the spectral domain technique.

0

0

-20

Z -30o

S -40 - ...... ......

-50

"6 8 10 1'2 14 1ý6 1'8 20

FREQUENCY (GHz)

Fig. 8 Return loss of a microstrip patch antenna using second-order Higdon absorbing boundary
conditions in the microstrip feed line and the remaining walls [9]. TLM results compare well with
spectral domain results (dotted line) published by Wu et al. [13].

TLM MODELING OF DOPPLER SHIFT
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4 12 20 28 36
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Fig. 9 Reflection of a Gaussian pulse from a moving (receding) electric wall, simulated with TLM.
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4 REFINEMENTS IN BOUNDARY MODELLING

Since the dispersion of the three-dimensional condensed node mesh is almost negligible,
it is preferable to maintain a uniform Cartesian grid throughout the computational
domain and modify the properties of the mesh only in the vicinity of features that
create strong local non-uniformities, or that are not conformal to the grid. Examples
are sharp corners, edges, and slanted or curved boundaries. A number of techniques for
local mesh modification have been developed recently. They include special cornernodes
and edge nodes [141-[16], or extension of boundary positions using signal processing
[17],118]. In the first approach, the impulse scattering parameters of boundary nodes
are modified to account for the modification in the boundary position. The second
approach is implemented by processing the signal reflected by the boundary. Since
these modifications can be updated at every time step, they allow also the modelling
of moving boundaries. Fig. 9 shows the delay and broadening of a Gaussian pulse
reflected by a conducting boundary that is moving away from the source at a speed of
0.035c. The modification of the pulse shape results in the Doppler shift of its spectrum.
These techniques of modifying wall positions during a TLM simulation can be used for
boundary adjustments in optimization problems.

5 COMPUTER IMPLEMENTATION AND VALIDATION OF TLM

TLM being a computationally intensive numerical technique, proper implementation of
algorithms is essential to ensure optimal use of computational resources. Furthermore,
a user-friendly interface and compatibility with other CAD tools are important aspects.
Programming is therefore performed preferably in C++ language on computers which
incorporate special graphic processing hardware in order to free the main memory for
TLM computation. Particularly impressive computational speeds can be obtained with
SIMD-type massively parallel processors such as the Connection Machine or the DEC
12000 (MasPar). In 2D simulations, each processor can be associated with one TLM
node, and all nodes are updated simultaneously, while in 3D the computer can process one
vertical or horizontal slice of the structure at a time. Typically, a parallel computer with
8K processors is able to perform 250,000 three-dimensional scatterings per second. Table
1 compares the performance of various well-known computer platforms when solving a
2D problem with 128x64 mesh cells and 4,000 iterations.

Computers CPU time in seconds 2D scatterings/second

Toshiba PC, Model T5200/1 00 6,500 5,000
IBM Model 90 XP486 1,250 26,000
DEC RISC, Model 5100 352 93,000
IBM RS6000, Model 350 117 280,000
HP 9000, Series 7000, Model 755 88 370,000
DECmpp 12000 with 8K processors 12 2,730,000

Table 1 Execution time and scatterings per second for a 2D-TLM simulation on various computers.
The problem comprizes 128 x 64 mesh cells and 4000 iterations.

Validation of computer codes is an important issue. To demonstrate the accuracy that can
be achieved with TLM, Fig. 10 shows the S-Parameters of a waveguide filter computed
with TLM, together with results computed with two different mode-matching methods
[19]. These results are in excellent agreement. More validation results will be shown
during the Workshop presentation.

,I



6 CIRCUIT DESIGN AND SYNTHESIS WITH TLM

Design and synthesis of electromagnetic structures are the ultimate engineering
applications of a modelling technique. Two possible approaches to this theme have been
demonstrated with TLM. The first - more classical - approach combines time domain field
analysis controlled by an optimization program. By using datapipe techniques the TLM
analysis can be performed on a powerful processor such as MasPar or the Connection
Machine [20], or the task can be divided among several workstations, as will be discussed
in another Workshop paper [21).

1Is2110

ca -i0-

-• -20

•- -30 i; • ,'

Is~ill - TLM

-40 Modified Mode Matcing
--Mode Matching

-50
33 33.5 34 34.5 35 35.5 36 36.5 37

FREQUENCY (GXb)

Fig. 10 S-Parameters of a waveguide filter computed with TLM and with mode matching methods

Fig. 11 sketches an arrangement which combines OSA90/hope with a TLM
Electromagnetic Field Simulator [20]. The optimization is performed on a workstation
which pipes updated geometrical data to a massively parallel computer. The new
structure is then analyzed in the time domain with TLM, S-parameters are extracted
by Fourier transform and piped back to the optimizer. This process permits design
without the need for equivalent circuit representation and includes all parasitic effects.
It is also much more flexible as far as geometrical complexity is concerned.

... Frequency Time

Domain -Domain

OS90/hope L

SOptimizable
Variables geometrical data -o ElecEromagneii

Simulator
No

Resons ~ - S parameters -
Okay Declares Meshes

Sets up Boundaries
Performs Simulations

Yes Computes S parameters

Fig. 11 Design by TLM electromagnetic field analysis controled by an optimization program:
OSA90/hope and TLM communicate through UNIX high speed datapipe
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The other approach makes use of time reversal to synthesize a structure geometry directly
from its desired frequency response. This process is similar to inverse time domain
scattering.

The reconstruction of a scatterer from the known scattered field is demonstrated in Fig.
12 by a simple example. A diamond-shaped conducting obstacle is placed in a parallel
plate waveguide. A uniform plane wave excitation with a Gaussian time profile is injected
into the structure from the left side. The time response is picked up at all points of
the absorbing walls at the left and the right. From this response (total field solution)
is subtracted the response of the empty guide to the same excitation (homogeneous
solution), yielding the scattered field (particular solution). The latter is then re-injected
in reverse time sequence at these boundaries into the empty waveguide, and the resulting
field distribution in the guide is is processed, for example by finding the minimum of the
Pointing vector profile in the computational domain. We can thus reconstruct the exact
shape of the scatterer within the resolution of the TLM grid, as shown in Fig. 12.b.

Example of reconstruction

(a) b

Nlerah i obstacl ic nm de a par~ialci p1 atc ýs ave gode

(ai Shape of rhe scatterer for (he anal ysi-

(hi Recoistrucied shapeo t' he sanic obstaicle

Fig. 12 Example of shape reconstruction of a metallic obstacle in a parallel plate waveguide through
time inversion. (a) Shape of the scatterer, (b) reconstructed shape of left side of the obstacle. The

electric field is perpendicular to the paper.

The principle of synthesis of electromagnetic structures by time inversion is the following:
Since the sources of a scattered field reside on the surface of the scatterer, this reverse
process allows us to construct the geometry of scatterers from a desired scattered field
response. This procedure is not unique, but the difficulties associated with the non-
unicity of the inverse problem can be removed by selecting a priori an approximate
topology which has the desired geometrical features of the structure we want to design.
These features are then mapped into the time domain by a forward TLM analysis,
The Fourier transform of this response is subsequently modified in the lower frequency
range (operating range) of the structure, while the high frequency content (which defines

L
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9 the shape of the structure) is preserved. The updated and processed time response
is then injected back in reverse time sequence into the computational domain to yield
an improved topology. The analysis-synthesis cycle can be repeated until the desired
response is achieved. Experience has shown that such a process converges very quickly,
typically after two or three cycles only [21],[22].

The flowchart of this process is given in Fig. 13. It is much faster und more efficient
than optimization by repeated forward analysis.

Analysis of an Analysis of
approximated structure empty guide

Modification of the response
according to specifications

[ Difference between this response
and the homogeneous res nse

Re-injection into the empty guide
in reverse time sequence

Extraction of the geometry
of the new configuration

New analysis

No Yes
Spcific ations ....... Exit

mmet? 
......

Fig. 13 Algorithm of the synthesis method using alternate forward and backward-in-time TLM
processes.

The process is best clarified by means of a simple example. Suppose we want to synthesize
a shunt inductance in a parallel plate waveguide. The specification given to us are then
the S-Parameters of a shunt inductance in the frequency domain (Fig. 14.a)

There are many ways of realizing a shunt inductance in a waveguide - the solution is not
unique. We must choose a basic topology. We select a centered thin transverse septum
and guess its width required to yield the desired inductance, say 41 Al (Fig. 14.b). The
approximate dimensions can be found in many cases from closed-form expressions, given
in the literature, which link the dimensions of discontinuities to their equivalent lumped
element circuits. An educated guess is also fine.

The approximate structure is then analyzed forward-in-time, and the dominant mode
content of the first response is extracted (Fig. 14.c). We see that S11 is already quite
close to specifications, but S21 is not. We thus replace the low-frequency part of S 21 by
the desired (green) characteristic and keep the high frequency content the same. The
modified total reponse is then converted back into the time domain and, reduced by
the homogeneous response of the empty waveguide, re-injected into the computational
domain in the inverse time sequence. The resulting synthesized scatterer geometry is an
obstacle of width 31 Al.

L
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ScatLering ParameLers
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Figl. 12 (a) Desired S-parameters of a shunt inductance in a parallel plate waveguide; (b) possible
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Scattering Parameters
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Fig. 12 continued (c) S-parameters obtained by analysis of the first guess of width 41 Al (d)
S-parameters obtained by analysis of the new geometry obtained by inverse time synthesis from the
combination of the characteristics in Fig. 12.a and 12.c
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A new analysis of this obstacle yields the S-Parameters shown in Fig. 14.d. Obviously,
the result is much better for S21 now. If we are still not satisfied, we may repeat the
synthesis cycle again.

7 CONCLUSION AND FUTURE TRENDS

While the important issues and numerous recent developments in TLM modeling could
only be scanned very briefly in this Workshop paper, it is obvious that TLM has
evolved into a powerful, accurate and numerically efficient tool for general purpose
electromagnetic analysis, design and synthesis. However progress is still being made
on many fronts. The most dynamic areas of development are: improvements in the basic
TLM algorithms, refinement of high performance boundary modelling, implementation
on massively parallel computers, combination of TLM with optimizers for direct
geometry/field based CAD, and synthesis of structures by time reversal. Other important
developments which have not been discussed in this Workshop paper include signal
processing to reduce the required number of computation steps, and modelling of
nonlinear and dispersive materials as well as of semiconductors. Given the rapid growth
in computer performance and the increasing sophistication of TLM modelling it seems
likely that TLM based electromagnetic simulators will soon become highly versatile and
powerful engineering design tools indeed.
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Abstract

This paper presents an overview of modelling microwave circuits in the time- and
frequency-domain. The emphasis will be on modelling approaches which can be applied in
the time-and frequency-domain without leaving the framework of one technique. This
leaves only two pairs of methods: The finite difference (FD) method in the frequency
domain with its time-domain counterpart, the time-domain FD (TDFD) method, and the
transmission line matrix method in the time-domain (TDTLM) with its frequency-domain
counterpart, the frequency-domain TLM (FDTLM). The latter method has been developed
very recently and, in conjunction with a novel s-parameter extraction technique, represents
a computationally very efficient numerical tool for frequency-domain analysis of
microwave circuits. The discussion presented in this paper focusses on new developments
in the FDTD method and the FDTLM.

Introduction

Time- and frequency-domain techniques are complementary tools in the analysis and design
of microwave and optical integrated circuits. While time-domain methods are very useful
for wideband applications like transient problems as well as for nonlinear analysis,
frequency-domain techniques are computationally more efficient for the majority of
microwave design problems, which are of comparatively narrow band nature.
To address the different design problems using the framework of essentially one analysis
technique was possible in the past only with the finite difference method (FD) in the
frequency domain or its time domain counterpart, the finite-difference time-domain (FDTD)
method [I].
For another well known time-domain technique, the transmission line matrix method
(TLM) [211,[221, no frequency-domain counterpart existed so far. Hence, if someone was
interested not only in time-domain analysis of field problems, but also in frequency-domain
results, he was forced to either apply the Fourier transform to the TLM time-domain
response or leave the frame work of the TLM method alltogether and use one of the many
different frequency-domain approaches. Neither of these alternatives is very satisfactory.
On one hand, accurate frequency-domain data obtained from a Fourier transform of the
TLM impulse response requires, in some cases, long iteration times. This can result in
excessive computation time and may not be suitable for the problem at hand (design,
optimization). On the other hand, to use a frequency-domain method instead, which may
lead to much shorter computation time, may not be attractive either. Firstly, because of the
additional effort necessary to learn the technique and, secondly, because of the possibility
to find out after long hours of studies and programming that the normally unpublished
problems of this particular technique produce uncertain results in exactly the case one is
interested in (....).



These difficulties can be circumvented by using the FD and FDTD method. Firstly, the
basic principles known from the FD method (in the frequency-domain) can readily be
extended into the FDTD method and vice versa. Therefore, the knowledge of one technique
(its pros and cons) can be used as a basis to extend the method to tackle another set of
problems. Secondly, frequency-domain modelling using a time-domain detour with the
FDTD is not necessary, the FD approach can be used instead.
Although frequency- and time-domain problems can be handled within the framework of
one method, both the FD and FDTD are not without problems either. For example, a
graded mesh necessary to resolve fine circuit details leads typically to a first order error.
Although a solution to this problem has been proposed recently [ I, large memory space
requirements and computation times are still the limiting factors in both techniques. This is
mainly due to the problem of not being able to use the diakoptics technique effectively in
the FDTD.
Some of the above mentioned problems are not present in the TLM approach. For example,
using the symmetric condensed node in the TLM always produces a second order accuracy,
even if a graded mesh arrangement is used. This is so because the node scattering
parameters are calculated at the center of each TLM cell from the voltages and currents at
the boundary of the cell. Hence, neighboring cells of different size have no effect on the
accuracy of the discretization. Another advantage of the TLM is the potential to use
diakoptics techniques. Complex structures can be divided into simpler sub-structures and
are analysed separately before the individual solutions are combined. This approach saves
computer memory space and computation time.
To avoid using the Fourier transform of the TLM response when frequency-domain data is
required, but to stay within the framework of the TLM method, a TLM node has been
developed recently which works entirely in the frequency-domain. In conjunction with a
novel s-parameter extraction technique, a very powerful and flexible numerical modelling
tool has been developed for frequency-domain design problems. Its computational
efficiency and flexibility is better than most frequency-domain techniques known today.
Since the space is discretized by using the same transmission line nodes as in the time-
domain TLM (TDTLM) method, the frequency-domain TLM (FDTLM) represents a true
frequency-domain counterpart to the time-domain TLM.
Before outlining the basic principles of the FDTLM approach, some new developments in
the FDTD method will be discussed and new results are presented. A discussion focussing
on the FDTLM follows. Results will be presented to illustrate the flexibility of this new
method.

The Finite Difference Time Domain (FDTD)

The Finite Difference Time Domain (FDTD)was first introduced by Yee in 1966 [1] by
discretizing Maxwell's equations directly using the central finite differences in time and
space. Since then the FDTD has been further developed by many researchers [i.e. 2-6] and
is now well established as a versatile technique to solve electromagnetic field problems.
However, a commonly known problem in the use of the FDTD is the need for large
computer memory, in particular for circuits in which the ratio of dimensions between
subsections is large. Normally the smallest section to be resolved determines the mesh ratio
to be used to discretize the overall circuit space. Since the mesh size and computer memory
is inversely proportional and depend on the structural details to be resolved, a small mesh
size leads naturaly to long iteration times for an impulse to become stable. Only then a
Fourier transform can be performed to provide accurate frequency-domain information.
To alleviate these problems, two improvements have been introduced recently. The first
allows a very fast frequency-domain hybrid mode analysis of complex circuits. This is

possible by using a phase shift ýzXz along the z-direction (propagation direction). The
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propagation constant of hybrid modes can then be calculated by using a two-dimensional
mesh with a truly two-dimensional grid size. Furthermore, by appropriately arranging
variables, only a real impulse response is involved. In contrast to the conventional FDTD
analyses, which requires a three-dimensional mesh with a three-dimensional grid for this
type of problems, the new technique improves the computational efficiency significantly.
The basic idea to this approach was first published in [15 ] and at about the same time
independent from the work in [151, was applied to the TLM method by the author and his
group [11. Subsequent work in his g, -p has led to the application of this principle tN the
FDTD.
The second improvement is concerned with a graded lattice scheme which can be
continuously adjusted along any space direction wLth arbitrary lattice ratio. The ratio need
not be an integer number. The important contribution here is that a second-order accuracy is
maintained by eliminating the first-order errors without the use of additional wave
equations or space interpolations.

Two-Dimensional FDTD
The conventional time-domain analysis of hybrid modes in guide wave structures requires
a three-dimensional mesh with three-dimensional space grids. Different techniques are used
to determine the hybrid modes. One of those uses a Gaussian pulse as excitation in a
shielded microstrip line. Typically 160 space meshes are required in propagation direction
and about 5 to 7 time steps for any one mesh to satisfy the stability condition. Another
approach is to resonate a section of the guided structure by placing two short-circuited
planes along the z-axis a distance L apart. The length L corresponds to half a guided
wavelength of the mode of interest. The resonance frequency of the cavity corresponds to
the frequency at which this particular propagation constant is valid. The relationship
between the propagation constant and L is then 13=2x/L. By changing L also 03 changes.
Repeating the calculation of the resonant frequency of the resonator for each P3, the
dispersion characteristic of the guided structure can be obtained. Obviously this approach
involves easily thousends of iteration steps.

To avoid long iteration times in the computation of hybrid mode propagation
constants, a phase shift 13.Az is introduced in the propagation direction . This effectively
replaces the space variable z. Since the propagation direction is replaced by the propagation
constant as input parameter, the impulse needs to propagate only in the transverse direction
and therefore stability is reached much faster than if a three-dimensional mesh is used.

As shown in [11,12], when the modes have been established a period of time after
the excitation, only a phase shift exp(-jf3z) is involved at any adjacent nodes for any
specific propagation constant 03. This modal knowledge is used to simplify the scheme. It is
easy to see that any incident or reflected impulse for any propagation constant 03 satisfies

E, Ey, H= (E'(xy), E,(x,y), H2(x,y)ljexp{T.ijzl (Ia)

H, Hy, E" (H,(xy), Hy,(x,y), E,(x, y))explTjISz} (Ib)

The factor] in (la) is introduced to obtain a real-variable impulse response. The
discretized Maxwell's equations now yield:

n° 5(i0) = Hn-) 5 (t. j)- At {E (i, j + 1) - E,(i, j)I/ Ay - PEY(i, j)I



+0.5 At
H;+° (ij) = HR-° '(i,j) -- ([ E,-(ij) - E-(i + 1.j)]/ Ax + PE,(i~j)j

Hx10 5 (ij) = H•--0 .5 (i, j) - At ([ Ey (i + 1. j) - Ey (i, j)] / Ax - [E.`(i. j + 1) - E. (i. j)] Ay)

E',+'(i.j) = E' (i.j) + A---[H'+ (i.j + 1)-H.+°, (i, j)l/ Ay + •H,, ".J+ 1)(
£

Eyn'(i, j) =E;'%(i. j) + AtifHPt+o5 (i,]j) - H,'I+O.5 (i + 1,]j)] / AX - P3Hxx
0 '5(i, j + I))

eER+ 1(i, j) = EP'(i, j) + At J[ H),+O.5 (i + 1, j) - H70.5 Ui,j) / Ax -lIHý,+°s'(i, j + 1) - HR,+0-'(ij)]/ Ay)

(2)
Where At , Ax, and Ay are, respectively, the time step and the space steps in the x-

and y-direction. The central finite difference scheme has been used to discretize the space as
well as the time axis t.

Consideration on Conductor and Dielectric Losses
Losses can be easily taken into account in this technique. Using a self-consistent

approach, losses for metallization dimensions smaller, comparable or larger than the skin
depth can be considered. The loss factor is calculated from the Fourier transformation of
the impulse at a specific space point and at different time steps after mode stability has been
reached. In a lossy structure, the fields will decay with time due to absorption. For
instance, at time kAt, the electric field Ei of the i-th mode (operating frequency "i at a given
j3) can be written as

E' (kAt) = E' (O)exp( jcwkAt)exp(- -• kAt) 2 (3)

where QO is the quality factor of the transmission line. When a mode has been established,

the Fourier transform of the total field E(kAt) at the frequency "i is given as

•YoE'( kAt )exp( jco 'kAt )exp(- ";,kdt )•4

By chosing different values of N and applying curve fitting, the quality factor Qi or wj/Qi

can be obtained from the above equation. The attenuation coefficient cXi for the lossy
guiding structure is directly given by [13]:

2Q, - 2Q, (dw /d) (5)

where Vgi is the group velocity of the i-th mode, which can be obtained by the mode
dispersion relationship.

Graded Lattice
A continuous' ,ariable lattice size (Fig.l) instead of a fixed lattice ratio is an important
feature to improve the computational efficiency of the FDTD technique. The option to use a
fine but variable lattice size around metal comers where field changes are significant and to
use a continuously growing lattice size with greater distance from that comer allows treater
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computation accuracy with less computer memory. Although several attempts have been
made in the past to achieve such a graded lattice, the remaining error term was always of
first-order. In other words, the larger the mesh ratio, the higher the time-domain error. As a
consequence, if the time-domain response is used to compute frequency-domain data via a
Fourier transform, significant errors can occur. If one remains in the time-domain, this
error is in most cases marginal.

Xiao and Vahldieck [14] have introduced a new universal grading scheme with
continously variable lattice size in all 3 space dimensions. The second-order accuracy is
maintained by eliminating the first order errors analytically. No additional wave equations
are necessary at the interface between neighboring lattices. In developing the new algorithm
we look first at the problem of the first-order error in the variable lattice scheme. Using the
Ex-field at the boundary of two neighboring lattices as an example

..4 = . J At dHAl 0 ( i,j,k) dH; 0 5(i,j,k)IEi,,J,k) = Exi,J,k) +--f f•d
dx dz (6)

we find that by developing the x-dependent term in this equation by a Taylor series yields:

dH 0 5 (i, j,k) H. (i,j + 1,k) - Ht-t 5 (i,j,k) + o((qj+ -q,)Ah)
dx Ah(q 1 + q, -i) / 2 (7)

Equ. (7) clearly shows that normally a variable grading scheme provides only a first-order
accuracy. However, by appropriately arranging the lattices a second-order error can be
obtained. There are two possible techniques: the first provides a second-order accuracy
only for integer mesh ratios without changing the uniform mesh algorithm [ 14] and the
second provides second-order accuracy for any non-integer mesh ratio. The latter technique
however requires a modification to the algorithm in that the three neighboring lattice cells
are combined.

Variable Grading SchemeWith Non-Integer Mesh Ratio and Second-Order
Accuracy
Considering first the lattice arrangement shown in Fig. la, the electric field components left
and right from the boundary between the two mesh sizes (point D in Fig. 1) can be always
arranged in the middle of the magnetic field components or vice versa. Therefore,
calculating the electric (or magnetic) field components from the magnetic (or electric) field
components provides automatically a second-order accuracy since the central finite
difference is maintained. The problem arises at the boundary between the two regions
where the E-field (point D) is not located exactly in the middle between C and E and
therefore calculating the E-field from the H-field leads to a first-order error. We found
however, that a compensation factor can always be found to cancel the first-order error
terms and therefore maintaining a second-order accuracy. To find this compensation factor
three neighboring lattice cells must be used. To illustrate this procedure consider Fig.lb.
Using the central finite difference scheme to calculate the electric field components from the
magnetic field components introduces an error. A Taylor series analysis yields:

+ H,(i + 1) -H.(i) +o(h 2 )(p,+i+ p, / 2(8a)

H, (i) -H(i -I) + o(h2
(pi + !--i) / 2 (8b)

Ey" 1 i -1)H,(i - 1) - H,(i - 2) +oh2
'' i- ) , -/ + A-2-) -- / 2 +(°8h0



As we can see EY'(i +1), E 4 (i), and EA"(i -1) are Ai+I, Ai, and Ai-1 away from the

electric field nodes Ey(i+1), Ey(i), and Ey(i-l), respectively. Ai+l, Ai, and Ai-I are given
as follows

4 h (9a)

h
A,di = W•(l•÷ - p,-) :(a

(9b)
hA i- i = -W( Ap - 1 - p i-2 ) (9c)

The other dimensions in Fig. lb may be expressed as

hL. = (p ,-l + p ,)h + A,÷I - A i-I = [p-W/ ' + p , + pi~ j + p•.z ] (10a)

L h
L =-•-(p.h-A.-i)-A, = h1•A+ +p.,2 ->p1-I -1' (l0b)

Developing the electric field components at the electric field nodes in Fig. lb in a Taylor
series

E(i) =E(i)+iE(i) + o(h 2)
dx (11)

shows a first order partial differential term. This may be expressed by using the first order
partial differential expansion at the electric nodes as follows

dEy (i) = dE,(i) + 3 d2E,()+
dX 2(12)

and therefore, equ. 11 can be written as

E, (i) + = E&E(i) +°Ai dE(i +&d 2E,(i) I +o(h2 ) (13)

or

E,(i) = E. (i) +A,[ Ey(i + 1) - Ey(i - 1) 1 + o(h2)
Is (14)

where, li (i=l, 2,...,N) is time independent and fixed for a specific mesh arrangement. The
compensation terms in the bracket of the right side of the above equation have been
calculated in the neighboring equations and therefore the new algorithm requires not much
more computations. Hence, a variable mesh scheme with arbitrary lattice ratio and a
second-order accuracy is always feasible if neighboring mesh field components are
combined. This holds also for the other field components and is generally applicable to all
three space dimensions.
Several results concerning the effectiveness of the grading scheme are shown in Fig.'s 2
and 3. Fig.2 illustrates the CPU time savings for different grading ratios in case of the two-
dimensional FDTD described before. As shown for a microstrip line, the CPU time
decreases but at the same time the relative error increases. Fig.3 provides an indication of



the maximum grading ratio that can be used without degrading the accuracy of the solution
too much. Typically a grading ration of 1:2 provides essentially the same accuracy as a
uniform grading scheme.

h, I I I I I I I I I rI3'l

Fig. I a Variable grading scheme
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The Frequency-Domain TLM Method

The time-domain TLM (TDTLM) method is a time iteration procedure which requires
synchronism of the impulses travelling on the transmission lines. To accommodate locally
varying electrical properties or a graded mesh, transmission line stubs need to be added to
the nodes. For small mesh sizes or for large mesh ratios the time step required to reach
stability may be very small and the number of time samples to satisfy steady-state
conditions may become large (161.This problem leads to significant computer run-time and,
in cases like the one shown in Fig.9, may require the use of a supercomputer. On the other
hand, the circuit discontinuity illustrated in Fig.9 is becoming a more and more typical
problem in the design of MMIC's, in that fine circuit details with small dimensions exist in
close neighborhood with areas of relatively large dimensions. Structures of this type are
difficult to analyze with any time-domain technique because of the above mentioned
problems. Furthermore, if the time-domain algorithm is only used to extract the frequency-
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domain response of the circuit and the transient solution is of no interest, then it is a very
inefficient way to accomplish this.
To alleviate this problem without leaving the framework of the TLM method (FDTLM), Jin
and Vahldieck [171 have recently introduced a frequency-domain TLM method which
works entirely in the frequency-domain.
In the FDTLM the space domain is discretized by the same transmission line network
known from the conventional time-domain TLM (TDTLM) method. However, instead of
exciting the network with a single impulse, an impulse train with its magnitude sinusoidally
modulated is assumed. At any time step this new excitation retains the form of an impulse,
but its modulated amplitude varies sinusoidally with time as eJo)NAE, where 0o is the
modulation frequency, N the time step, and At the time interval between impulses. In
practical computation, the FDTLM algorithm operates at any time instance and the common
time-dependent factor eJWNAt is omitted. Therefore, no time iteration procedure is needed.
The assumption of an impulse train excitation is only meant to establish the relationship
between the TDTLM and FDTLM and to transform the TDTLM algorithm into the
frequency-domain whenever necessary. It has been demonstrated in previous work
(i.e.[171) that the FDTLM is as flexible as the TDTLM while its computational efficiency is
better than most frequency-domain techniques.
In the original paper [171, in which the concept of the FDTLM was first introduced, the
algorithm was derived directly from the time domain nodes (including stubs). The
following paragraph describes some new developments. It will be illustrated that the nodes
can also be derived directly in the frequency domain [20]. Coincidentally, parallel to our
work on this subject, Christopoulos and co-workers [16] have introduced a frequency-
domain TLM node and called it the steady-state TLM technique. For the special case of
equal characteristic impedance on all lines, the final result of [ 161 is the same as the one
presented in [20].
Since the FDTLM algorithm operates within one time step at an arbitrary time instance, the
common time-dependent factor eJWNt can be omitted. This is in analogy to other
frequency domain methods where a sinusoidal excitation is assumed. The only difference
in comparison to ordinary frequency domain methods is that the time-dependent factor is a
continuous function of time (eM€)t) , while for the FDTLM it is a discrete function (eoJ)NAt)
of time. This leads to a slightly different representation for Maxwell's equation in the
FDTLM where the time axis is discretized on the right hand side of the equation:

e jeJ(N+l)At e HjwAt
V x EeJ(*NAE = -t9 At H

V x Hejj°Nic = e E
At (15)

By omitting the common factor eJoWNAt on both sides of (1) yields:

ein)At -- I

V x E=-jo. joAt H

ej°dat - I
Vxn= jw jwAt (16)

Comparing (16) with the time harmonic representation of Maxwell's equations[17], we
find that there is an additional factor on the right hand side of (16). This additional factor
approaches unity if coAt approaches zero. It is obvious from (16) that the additional factor

(



from the time discretization leads to the dispersion problem in the TLM network. In the
FDTLM, this dispersion problem can be easily eliminated by modifying the material
permittivity and permeability in the following way:

VxE=-g--•-

_ZlE
VxH= -- (17)at

jw0at jwAt
with ie = t and o E Hence, after the time axis is discretized, (17)

becomes identical to the time harmonic representation of Maxwell's equations.C 33.

FDTLM nodes derived from existing TDTLM nodes
There are numerous types of nodes that can be used in the TDTLM method. Each type of
node contains several main branches and stubs. The stubs are necessary to maintain the
time synchronism. The number of main branches and stubs depends on the type of node.
For example, for a symmetrical condensed node, there are 12 main branches and 6 stubs;
while for a hybrid symmetrical condensed node, there are 12 main branches and 3 stubs.
Without losing generality, we may write the scattering equation for the TDTLM
(symmetrical condesed node) node as follows:

IS] Vi s. s.][vi (18)
where S is the symbolic scattering matrix. The matrix coefficients are given in [ 18,191.
Vs, V,' are the vectors of the reflected voltages at the main branches and stubs, respectively.

while V,,V, denote the vectors of the incident voltages.
Assuming that d is the smallest of all node dimensions throughout the mesh, the

propagation factor is defined as e-'-, where ko is the wave number of free space.
Therefore, for the stubs, the reflected voltages are related to the incident voltages at the
center of the nodes in the following way:

V• = e-"-. r,.V2 (19)
where F, is a diagonal matrix with the i' element being either 1 or -1, depending on

whether the i"' stub is open or short circuited. From equations (18) and (19), the
relationship between the incident and reflected voltages at the main branches can be
obtained as

V' =[S +e- S-r- . . (I-e-j.S .)-r . .-V (20)

P

Equation (20) relates the reflected and incident voltages of the main branches at the center
of the node. Moving the reference plane from the center of the node to the boundary of the
node, i.e. the ports of the main branches, yields

," =-j'kP.Vd (21)

Equation. (21) provides an explicit expression for the scattering matrix of the symmetrical
condensed FDTLM node. The scattering matrix relates the reflected and incident voltages at
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the ports of the main branches of the node and its property is completely dependent upon
both the propagation factor and the symbolic scattering matrix.

Any kind of nodes used in the TDTLM algorithm can be readily used for the
FDTLM method, with some slight modifications. The main procedure of constructing the
frequency-domain algorithm from the existing node is firstly to eliminate the stubs and then
move the reference planes from the center of the node to the boundary of the node. Thus,
any full-wave three-dimensional TLM node can be expressed explicitly in the frequency-
domain by a (12X12) scattering matrix.

FDTLM node derived directly in the frequency-domain
To preserve the time synchronism in the TDTLM nodes, the choice of values of the

distributed inductances and capacitances on the main branches is limited. Therefore,
whenever necessary, stubs are added for compensation. In the frequency-domain, time
synchronism is not required and therefore an extra degree of freedom is added to choose
freely the distributed inductances and capacitances or propagation constants and
characteristic impedances on the transmission lines so as to present the properties of the
discretized space correctly. Thus stubs are no longer needed in the FDTLM node. This has
been shown in a paper by Christopoulos and co-workers [161 and by Huang, Jin and
Vahldieck [20]. Since the information given in [201 is quite brief, more details are provided
in the following.

+xy +Xz -xy -xz +yz +yx -yz -yx +zx +zy -zX -zy

a] c1  d, -d4 b6 b6 +xy

a 2  c 2  b3 b3  d5  -d5 +xz

CI a, -d4 d4 b6 b 6 -Xy

C2  a2  b3 b3 -d5 d5 -xz

b2 b2 a3  C3 d6 -d6 +yz

S= d, -dj a 4  c 4  b5  b5  +yx

b2 b2 C3  a 3  -d6 d6 -yZ

A, d, C4 a4  b bs -yx
d2 -d2 b4 b4  a5  C5 +ZX

b, b 4 d3 -d3 a 6  c 6 +zy

-d2 d2 b4 04 c5  a5  -zx

b, b, -d3 d3 C6 a 6 -zy

Fig .4 New symbolic scattering matrix

For the symmetrical condensed node the corresponding symbolic scattering matrix
is shown in Fig.4. The matrix coefficients are derived using the principle of power
conservation which leads to the well-known unitary relation:

ST -y.S" = Y (22)

where Y denotes the diagonal admittance matrix consisting of the characteristic admittance
of each transmission line branch. S is the symbolic scattering matrix of the node. For
simplicity we assume that the characteristic admittance of each transmission line branch is
the same. Then the diagonal admittance matrix is reduced to a unit matrix and the
coefficients of the symbolic scattering matrix for the condensed node are reduced to
a, = c, = 0, b, = d, = 0.5, n = 1 - 6, which is found to be identical to Johns' node matrix
without stubs [18].



Assuming the characteristic admittance of each branch equal to the intrinsic impedance of
the medium and the propagation constant on each branch to be the same for both
orthogonal polarisations, then the propagation constants in each space direction yield:

k (V 2 +W 2  
VW)~2 vw U 2

__ 2+ W (23)

r=k (U 2_U

where y•, yy, y, are the propagation constants for the branches in x, y, and z directions,
respectively. k is the wave number, u,v ,and w are the corresponding node dimensions.

Knowing the propagation constants of all transmission line branches, we now
move the reference plane from the center of the node to the ports of the node and obtain,
similar to equation (21):

,V" =[S,] .PV (24)

where V',,V' are , respectively, the vectors of the reflected and incident voltages at the
ports of all 12 branches. Sp is called the scattering matrix of the symmetrical condensed
FDTLM node. The coefficients of the matrix are shown in Fig.5.

+xy +xz -xy -Az +yz +yx -yz -yx +zx +zy -zx -zy
Axy -Axy Axz Axz +xy

AXY Axy Axz -Axz +xz
-;xy kxy Axz Axz -xy

Axy Axy -Axz Axz -Xz
A A A -Ayz +yz•'xy ;yz +y

x y -Axy -Ayz Ayz -yz
-Axy Atxy Ayz Ayz -yx

;-xz -Axz Ayz Ayz + zz
Az Axz Ay z -Ayz +zy

- Axz ;xz Ayz Ayz -zX

AM AXZ -Ayz Ayz -zy

Fig5 Frequency-domain s-matrix for the symmetrical condensed node

where



p

-J(y. u/2+ Y vW/2)

xz =e X z (25)

-=e-j(yy*v/2+yz w12)

yz

Compared to the original approach [171 where the FDTLM algorithm was derived
by modifying the existing time-domain nodes, the construction of the FDTLM node
directly in the frequency-domain is somewhat more straightforward and leads to a simpler
explicit algorithm.

Intrinsic Scattering Matrix
As described in [171 the FDTLM algorithm is based on the concept of the intrinsic

scattering matrix (ISM), which is defined as the coefficient matrix relating the reflected and
incident waves at the exterior branches of a TLM network. The exterior branches are the
ones that point into the propagation direction of the wave. By establishing the ISM, the
general TLM network matrix is transformed into a matrix of significantly reduced size.
This matrix contains all the properties of the structure which can be computed through
matrix operations. This allows one to use numerous advanced techniques in matrix algebra
to enhance the computational efficiency of the FDTLM algorithm. Furthermore, the
diakoptics technique may be easily implemented in the algorithm. The entire structure may
be broken up into several sub-structures. The ISM for each sub-structure is calculated and
the one for the entire structure is obtained through simple matrix operations. Due to this
property of the FDTLM algorithm, the computer resources required in the computation are
only linear proportional to the volume of the structure. This makes the FDTLM method
very attractive and efficient in handling structures with complex configurations and large
volumes.

In order to solve the two-dimensional (2-D) waveguide eigenvalue problem or the
scattering parameters of a spatial three-dimensional (3-D) waveguide discontinuity
problem, the ISM must be formulated. To do this, the coordinate z -axis is defined as the
propagation direction of the wave. The main branches of the symmetrical condensed
FDTLM node (Fig.6) are classified into two types:

exterior branches: +zx, +zy, -zx, - zy.
interior branches: +xy, +xz, -xy, -xz;

+yz, +yx, -yz, -yx.

The exterior branches point into the propagation direction of the wave, while the interior
branches between neighboring nodes are connected through the following relationship

v:= C .v
=C. 

(26)
S Ic yr
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Where Cx and Cy are the connection matrices which connect the neighboring branches in

YI -

the x and y directions, respectively. Vm.yc wI.c are the incident and reflected voltages

between neighboring nodes. Therefore, a so-called intrinsic scattering matrix can be
defined as follows:

/ s . s 2] [i1 (27)

From equations (26) and (27), we can now find a relationship between incident and
reflected voltages of exterior branches, that are the branches which point in propagation
direction:

Vr =[S,M]. V (28)

where



pr

SIsW = S +S S• .C . N.SY,)

+S, C,.Q.(N.S,, +N.S, .C,.M.SJ)

M =(I - ,S. C,.)-1
N =(I - SY., )-'
P =(I - M .S,,y .C , .-N .- S ,,- .C )-1
Q =(I - N .-Sy,,.C,. - .S,,. C,)-1

Equation (28) provides an explicit expression for the intrinsic scattering matrix Sism in
terms of the scattering and connection matrices of the network. Once equation (28) is
obtained, the eigenvalues of a guiding structure can be determined and the scattering
parameters for two guiding structures connected through a discontinuity can be computed.
Details of this procedure for 2-D and 3-D problems will be described in the following,

d

1A 1B

Fig. 7 A slice of waveguiding structure

The FDTLM discretizes any guiding structure as infinitely long periodic network with a
structural pet-iodicity of d in the propagation direction ( along the z-axis ). Therefore, the
ISM is constructed from only one slice of waveguide. For simplicity we assume only one
node with branches pointing in propagation direction as shown in Fig.7. For this case the
ISM of the unit cell reads:

[ V A J L ,•L ; (2 9 )

where VA.O denotes the incident voltage vector and V,.8 the reflected voltage vector. To
determine propagation constants and the transverse mode distribution in the guide a transfer
matrix which is related to the scattering matrix is obtained as follow:

[VA] = = [SR-' SR-'S - R i (30)

[IAJ1erR-1 R'S 1(30)

where



S = R' - sA)- sM(t- s,.)-1 SAS I-'(t+ sA)
-[(I - SA)SAB(l -SA)- SA" I-SB

R=(- SAA)- SA8(I -S$A)-'SABI-' SAB

- [(I - SAA)SAR(1 - SAA) -SB l"V( + SAA)

Let the propagation constant in z-direction be 0, then the periodic boundary conditions
based on Floquet's theorem imply that

Thus, the transfer matrix of the unit cell must satisfy the eigenvalue equation

A - '1 =e-w IV](32)

The solution of the eigenvalue equation (32) is simplified if we consider the analytical
properties of the matrix A. We observe first of all thz• it (32) is satisfied, then the
following eigenvalue equation is also satisfied.

I(A +A-)-[]= 1(em +e-o).[ = cosh(Od).[,] (33)

The above equation proves the physically intuitive fact that if 0 is a propagation constant of

the structure, then -0 is also a propagation constant. Inspection of equation (30) shows
that the inverse matrix of A can be easily obtained by

A-' =[SR-' R-SR-'S] (4
L-R-1 R-SJ(4

So that

Thus, it is sufficient to consider the reduced eigenvalue equation

(SR-')• V = cosh(6d) V (36)

Equation (36) is the standard form of an eigenvalue problem to be solved for the
propagation constants of the waveguide modes. The eigenvectors correspond to the
transverse mode distributions.



ISM algorithm for 3-D discontinuities
The calculation of the scattering parameters for 3-D discontinuities using the ISM

involves the following steps [ 171. Firstly, any 3-D discontinuity is divided into two areas:
the region containing the discontinuity and the transmission line structures attached to the
discontinuity as the input and output ports. The intrinsic scattering matrices for the
discontinuity region and the transmission lines attached to it are determined. Secondly, a 2-
D analysis is performed for the connected transmission lines to find the field distribution
for the propagating modes. Thirdly, one of the ports is then excited by its modal field.
From the reflected and the transmitted field amplitudes the scattering parameters can be
found.

For the case of a two port waveguide discontinuity problem, the method for
evaluation of the s-parameters has been described extensively in [ 171, and is repeated here
only briefly.

The intrinsic scattering matrices for the discontinuity region and the two attached
semi-infinity waveguides are denoted as M, ML and MR respectively. The incident and
reflected modes at the interfaces to the discontinuity region and the attached waveguides are
related as follows:

vVlMj. m, [V 1
where V.,VL. are the incident and reflected mode vectors at the interface of the left-hand
waveguide and the discontinuity region; while V', VR are the incident and reflected mode
vectors at the interface of the right-hand waveguide and the discontinuity region ( each
element of these vectors corresponds to one branch of the network ). The excitation of the
system, V' 0 and V' 0 , which is obtained from a 2-D analysis, is incident at the interface
between the left-hand waveguide and the discontinuity region (Fig.8). It should be noted
that vector VL0 and VL0 describe the field distribution over the cross-section of the left-

hand waveguide. The reflected waves, Vý, V,' of the left-hand waveguide are then given by

V= ML• V (38)

V' = (I-- MR " ML)- - (MR- ML) V-LO (39)

where MR:

MR m + MLn . MR• (1 -mRR " MR)'m (40)

VR,V" of the right-hand waveguide are obtained from:

VR = MI .VR (41)

V, = (U -mRR MR)-' mRL (ML VL + VLO) (42)

From (39)-(42), the corresponding scattering parameters can be obtained.



Some examples for the numerical efficiency of the FDTLM are shown in Fig.'s 9 to 11.
Fig.9 shows a CPW discontinuity on a 400pm thick GaAs substrate with a thin insulating
layer SiO2 layer. Structures like this are either impossible to model with time-domain
techniques or require supercomputer power. Using the FDTLM the structure is discretized
with an irregular mesh of 9 nodes in x-direction and 11 in y-direction. A total of 4
subsections has been cascaded. The typical computation time on a IBM RS 6000 (530) is
approximately 2 minutes per frequency point. Fig. 10 shows a comparatively simple
structure: An E-Plane filter. Here the computation time is approx. 0.2 seconds per
frequency sample. Fig. 11 illustrates the complexity of circuits that can be modelled with the
FDTLM. In this case a modul interconnect is analyzed using a bonding wire to connect a
microstrip motherboard with a CPW transmission line on a different substrate carrier.

Conclusion
Some new developments in time-and frequency-domain modelling of microwave circuits
have been discussed. The emphasis was on the FDTD method and the frequency-domain
TLM method. It has been shown that a variable grading scheme for the FDTD with second
order accuracy is possible and that significant improvements in CPU-time and memory
space can be achieved. For the frequency-domain TLM method is has been shown that the
dispersion error due to the time discretization can be eliminated and that the frequency-
domain node can be either derived from the timc domain node or directly in the frequency-
domain.

L ,

Fig. 8

Excitation and resulting incident and reflected voltage amplitudes for a two-port net-
work.

Cascaded CPW discontinuity.
C-2pm, w-lOOpn, s-2OAm t

OWt-

Fig.9

, ,, o '0 b-3- 400 -•- .. .. .

)• o 6 ,-,0.

Cascaded double step CPW discontinuity on (;aAs with thin insulating layer.
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Abstract

The performance of interconnects is becoming one of the main limitations in high
speed digital circuits and microwave networks. It is important to be able to char-
acterise interconnects and predict their effects in circuits for such applications. Any
analysis procedure must include non-linear elements and perform analysis in the time
domain. This paper describes a method of calculating the properties of interconnect
structures using electromagnetic simulators and the determination of electrical circuit
models. The second part of the paper describes how interconnect models are used in
a circuit simulator to predict the effect of interconnects in high speed digital circuits
and microwave networks.

1 Introduction

Transmission properties of int'erconnects such as signal delay, reflection, attenuation, disper-
sion and crosstalk must be taken into consideration in the analysis and design procedures
of high speed digital circuits and microwave systems. It is important to include the trans-
mission line behavior of interconnects between the system components, if the behavior of
the overall system is to be accurately simulated. In general the system can be divided into
lumped, non-linear subnetworks and distributed interconnect structures. The distributed
interconnects can be represented by a number of basic models of transmission lines.

In this paper different approaches are described to characterise interconnects using time-
domain or frequency domain procedures. Each interconnect structure can be represented by
a circuit block described by its terminal relations. In the simple case, if the interconnect is a
lossless non-dispersive transmission line structure, the terminal relations can be represented
by a set of difference equations. In all other cases the terminal relations can be derived by
using calculated or measured scattering parameters of the interconnect structure in the time
domain, which can be generated directly in the time domain of by transforming frequency
domain data to the time domain.

If the interconnect is modelled as a lossy quasi-static transmission line, modal time do-
main analysis can be applied to obtain directly the impulse responses. However, in the case
of frequency dependent transmission line parameters or when coupling between the transmis-
sion line is not limited to adjacent lines the time domain modal approach does not apply. In
the general case of lossy and dispersive transmission line structures, the impulse responses
can be obtained directly by using time domain full-wave analysis (TLM and FD-TD) or
frequency domain analysis to obtain frequency domain scattering parameters which can be
transformed to the time domain. The -Method of Lines" (MoL) can be applied in this case.
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Finally we have a set of lumped non-linear subnetworks, all modelled by their time do-
main terminal relations. A general procedure based on the state space approach has been
developed to obtain the time domain performance of the whole network.

The transient responses of many examples have been obtained by using the proposed
analysis procedure. These examples include different types of interconnect structures in
high speed digital circuits and high frequency analogue circuits. The advantages of the pro-
posed method are the high computational stability and efficient numerical accuracy.

The paper is in two main parts. The first part describes how the MoL can be modified to
account for substrate losses, conductor losses and finite conductor thickness. The modified
MoL generates the electrical parameters that are required to develop electrical models of
interconnects. The second part describes how these models can be incorporated in a cir-
cuit simulator IT) order to predict the performance of entire high speed digital circuits and
microwave circuits in the time domain.

2 MoL modelling of IC interconnects

The modelling of IC interconnects, as compared to the modelling of microstrip circuits, is
complicated by the following;

"* multilayer substrates with varying effective permittivity and some substrates may be
anisotropic,

"* conductor thicknesses are finite,

"* conductor losses are significant (often greater than 100dB/m),

"* the substrates can be very lossy in Si structures (thc loss tangent can be greater than
0.1),

"* the physical size of interconnect metalisations are very small, and have a high aspect
ratio. A typical cross-sectional size is 1pum x 1prm.

To overcome these problems a modified MoL (Method of Lines) modelling technique has
been used to model accurately the electromagnetic fields of such structures and yield the
frequency dependent electrical parameters. Modern digital circuits axe designed to operate
at increasingly higher frequencies and the upper operating speed has become limited by
interconnect performance. To overcome this limitation it is necessary to model accurately
interconnects at high frequencies using electromagnetic simulation and then by using time-
domain circuit simulation, the behavior of real digital circuits are accurately determined.

The "Method of Lines" (MoL) is a hybrid differential-difference scheme where a one-
dimensional finite difference method is applied in the plane of the electrodes, and an as-
sociated matrix decoupling transformation allows the field equations, expressed in terms of
Helmholtz potentials, to be solved in the transformed domain. Using this technique a one-
dimensional discretisation need only by applied to model an arbitrary structure cross-section.

Earlier MoL modelling techniques assumed conductors to be lossless and thin, the new
technique considers each conductor to be a dielectric with a large loss tangent. For example
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Figure 1: Example structure: c, -
3 .6,(r2 -

3 .6,'3 = 6.0, C,4 12.6-0.003j, 1.0-j-

an aluminium conductor with a conductivity of 2.5 x 10' S/m at a frequency of 1GHz is
considered as a dielectric with a relative dielectric constant of,

1.0- j-- = 1.0- 4.494× 10x
'CC0

Using this technique, it is possible to model a structure as shown in figure 1 by considering it
as five dielectric layers. The model is solved by first applying a finite difference discretisation
in the x-direction, this is then used to form an eigen-problem involving the partial Helmholtz
potentials %, and Th. A wave, in a lossy structure has a complex propagation constant
-, = 3 - Joa. The structure then has an associated effective permittivity given by,

2 ) , ko = Lvroo(1)

The fields t and Ih can then be scaled accordingly,

fi~ *e H ~ -J-ze (2)HeI 2, _- C-•- •r , 1-1h = 1h"' e e-J-• (2

Maxwell's eqns. can then be discretised and written in the form,

(•J6h-_1 T  A2>A2 0

A h 0 (3)

WVhere.

A 2 = 
2da f02 Ae ,

2  2zda ~~e

t = Effective Permittivity on electric discretisation lines.

j-h = Effective Permittivity on magnetic discretisation lines.

h =I' the 19 operator for magnetic lines.

^T . h 0

D___ = is the a operator for electric lincs.

By solving this eigen-problem it is possible to solve the 2nd-order differential equations in
terms of y. From here it is easy to relate potentials on matching layers by applying the top
and bottom boundary conditions. This procedure is simplified for layers without disconti-
nuities in the x-direction since matrix symmetries can be applied, and the process can be
st reanilined.

The problem- with this modelling technique are:
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"* the large change in the order of magnitude of the effective permittivities in the x-
direction on the boundary between a conductor and the surrounding dielectric,

"* the location of the dominant propagating modes for the structure for small conductor
geometries (lossy conductors result in complex roots),

"* the extraction of the conductor electrical properties from the field distribution of dom-
inant propagation modes,

"* the choice of a discretisation scheme that is numerically stable yet has good resolution
on the conductor edges.

The vast difference between the substrate effective permittivity and the conductor effec-
tive permittivity makes the matrices ill-conditioned. This introduces inaccuracies into the
eigen-values and eigen-vectors used to uncoupled the 2nd-order equations. Since the solu-
tion of these equations involves exponential terms, the relative magnitudes of the numbers
vary by 10', this means that standard double precision computer arithmetic may not be
adequately accurate. The mathematics has to be rewritten to recast simple equations into
more complex but numerically stable forms.

The solution of the interface equations involves solving the eigenvalue problem,

[ZA __B = 0 (4)

Where EB is the potential on a particular interface (for example between layer I and II).
The matrix [Y] depends upon two parameters, the frequency w and the effective permittivity
•. By fixing the value of w it is then necessary to locate a value for E, for which,

Det. [Z] = 0 (5)

The solution of this problem in not trivial, since there may be more propagating modes
than conductors at high frequencies. To overcome this, approximate guesses are made to the
dominant mode root positions and the roots are located by gradually introducing the losses.
until the actual roots are found. This procedure is outlined in the following steps,

1. The substrates are initially assumed lossless and the interconnects are infinitely thin
and lossless. This yields real valued effective permittivities f. At a suitable starting
frequency the real roots are located using singular value decomposition [1].

2. Substrate losses are gradually introduced. The movement of the roots away from the
real-axis is tracked until the substrate losses are included in entirety. If during this
procedure the root position moves sharply, the substrate losses are decreased until the
root can be tracked accurately.

3. The conductor thickness is introduced using a surface impedance model [2,3]. This
model allows the conductor surface to be replaced by a resistance that can be subtracted
from the diagonal terms of the Z matrix.

4. The surface impedance model is replaced by the full MoL representation and the roots
located using a complex Newton Raphson technique. This root location technique is
reliable if the starting point is reasonably well known and the equations forming Z are
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analytic which implies that Z is analytic [8]. The root located is normally surrounded
by numerous poles and zeros corresponding to non-propagating modes. Stages 1 to 3

O above, vastly improve root location and automate the modelling procedure.

3. Finally, the frequency is swept to yield the frequency dependent electrical parameters,
tracking the movement of the roots.

Using this technique it becomes possible to locate reliably the dominant roots and charac-
terise tht structure.

3 Extraction of the stripline impedances

Once the effective permittivities for each of the fundamental propagating modes (equal to the
number of conductors) and the electromagnetic field distributions have been found, further
work is required to get the electrical strip impedances for the structure. The characteristic
impedance matrix can be found by using the denormalised voltage, and current matrices Vm

and I,,,

[Z'] = [VJ . [1mJ-' (6)

These matrices can be found using on of two techniques:

1. Calculating each of the conductor voltages and currents, for each mode, by using line
integrals.

2. Integrating the power and currents over the cavity area, for each of the propagating
modes.

The preferred technique proceeds by integrating the power and currents. In our case,
however, the problem is further complicated by multlistripline structures. For multistripline
structures, it is necessary to know the individual strip currents for each mode. In symmetric
models the total current flow, over the cavity cross-section for the odd propagating mode
would be zero. In this case it is not possible to get the modal stripline currents. To overcome
this problem, it is necessary to divide the structure into smaller sections, each containing
one conductor. The power and current flows within each section are integrated to give a
modal characteristic impedance and current matrix given by

PC(,, where s= strip number
Vqns,) - I whe,.f m = mode number (7)

Using eqn 6 strip impedances for all structures can be calculated. The division of a structure
is shown in figure 2. In this figure region A and B are individually integrated to yield the
total power and current flowing in the 'z' direction. This technique is problematic because
a large proportion of the currents flow is in the substrate, if the substrate is lossy. The
substrate currents need to be partitioned into components that belong to each conductor.
To minimise errors, we split the structure at the points directly between the conductors where
an electric wall exists. This technique assumes that the electric wall is vertically straight
through this point but, for asymmetric structures, the electric wall is a curve through this
point as represented by the dotted line in figure 2.

t I I I. ... i " •1 ... i - " I I I i I iI I i i ••5



Region (a) Region (b)

Figure 2: Division of conducting cavity for integration of current and power flows.

Figure 3: 3dB coupler arm of example 4.1: Constructed in brass, c = 1.0 x 108 S/m,
a = 25.5mm, b = 52.2mm, c = 12.7mm, d = 6.35mm.

By using the first technique of integrating the electric field from the cavity wall to the
centre of each conductor, to get the modal conductor voltages, the partitioning is simplified.
The modal conductor currents are found by a loop integration around each conductor. This
loop integration can be enlarged to take into account the substrate currents and yield an
accurate result.

The two techniques give different results, the line integral technique gives a good model
of the stripline impedance seen by a wave being launched onto the stripline, the area
power/current integral result is an accurate model of the stripline once a wave is propa-
ga-:ng freely (after an infinite distance). Using both of these results it would be possible to
mu," the coupling into the interconnect and the propagation over considerable distances.

4 MoL Results

4.1 Bar Line Example

The first structure modelled is shown in figure 3 and shows the limitations of the classical
formula in calculating the characteristic impedance of a 3dB bar-line coupler arm. The MoL
code was used to get accurate impedances for components of the 3dB coupler. The coupler
was to be used in a power application where accurate knowledge of the losses and impedance
were required. The MoL code took 7:43 minutes to run on a Sun4/75 and produced full
plots of the distribution of the electric and magnetic fields, current and power densities. If
field plots are not required then the program is considerably faster and the solution takes 4
minutes.

The program gives a characteristic impedance of 34.0 - 7.39 x 10- 4 jn compared to 33 fQ
using classical techniques [9]. The attenuation of the structure was 8.03 mdB/m. This result
is useful in assessing the operating temperature of such a transmission line in high power
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Figure 4: Simple interconnect type structure of example 4.2. a = 4.1 X 107 S/mr, ' =

12.9 Tan a = 0.0003, a = 2mm, b = 0.1mm, c = 6mm.

applications. The power flow is plotted in figure 5 and shows the large power concentrations
on the metal vertices. The small "curtaining" type effect in the x-direction along the edge
of the inetal is due to interpolation errors in the plotting package used.

4.2 Interconnect Example

The second example, shown in figure 4, is a large interconnect structure (3um x 70um)
supported on a simple single layer lossy substrate. The graph in figure 6 shows the attenu-
ation constant for the stripline versus frequency. The attenuation factor a can be extracted
directly from the calculated effective permittivity for the structure,

0 = ~*?k~e(8)

where 
ko =o

The characteristic impedance has been calculated by integrating the currents flowing in the
structure and the conductor voltage. The real and imaginary part of the characteristic
impedance are given in figures 7 and 8.

5 Equivalent circuit representation of the intercon-
nect structures

Numerous analytical and numerical techniques have been proposed to investigate intercon-
nect structure models in the time domain and their implementation in circuit simulators.
The most common approach is to characterise the interconnect structure by its impulse
responses [10-20]. These impulse responses should be as short as possible to achieve fast
simulation algorithm and small memory requirements.

In this paper the integral equation method [10, 11] and an efficient scattering parame-
ter approach [20,211 were chosen to characterise different type,- of interconnects with short
impulse responses. Simple circuit representations of the interconnects are introduced in the
following subsections. Each equivalent circuit consists of only a resistance and a time varying
source and represents one port of the interconnect structure. For brevity the mathematical
details of the formulation of terminal relations for the transmission line structures are omit-
ted and only short descriptions are given.
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Figure 5: Surface plot of z-directed power flow of example 4.1
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Figure 6: Attenuation vs Frequency of example 4.2.
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Figure 7: Characteristic Impedance (real part) vs Frequency of example 4.2.
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5.1 Uniform lossy transmission lines with constant parameters

A simple single uniform lossy transmission line can be characterised by frequency indepen-
dent resistance, inductance, conductance and capacitance per unit length. The Telegrapher
Equations describing the electrical behavior for this type of lossy lines are,

O -= Ri - L di
ax at

aO - G - Ot 
(9)

ax at
Taking Laplace transforms of eqn. 9, the relation between the transformed terminal voltages
and currents can be easily derived [10]. We define,

11,(s) = Z,(s) - ro,

H2(S) = C-"', (10)

and H3 (s) = Z-(s)C-"I

where,

R+sL LL

+ sC I r0 =

and - (R+s••)(G+sC)

In the time domain the explicit forms of eqn. 10 are,

h1(t) = ro,-' 31t{-32IO3 2t) + a Io(P2t)}
:~ I _t I,••, '•

h2 (t) = C-t6(t - td) + are_31t1(/ 3 2 - t2 u(t - td) (11)

h:,(t) r, -6'6(t - td) + roJ-z1t {-321o(32 -- t,) + o10 (0 2 t d-d2
- t}u(t- td)

where.

1 = G + R (= G _ R= 1

1 31 '32
1' -- , O0=- , O -

6(t) and u(t) are the delta and unit step functions respectively, 10 and 1, are the modified
Bessel functions of zero and first orders.

The relations between the instantaneous terminal voltages and currents can be obtained
from the s-domain solution of the Telegrapher equations,

v1 (t) = roil(t) +u,,(t)

v2 (t) = roi 2 (t) + u 2 (t) (12)

where.

udI(t) = h1 (t)* zi(t) + h2 (t) *t 2(t) + h3(t).*i2(t)

u, (t) = h,(t) * i2 (t) + h2 (t) * vi(t) + h3(t) i1(t)
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Figure 9: Lossy transmission line

\'here * is the convolution operator. Each port of the transmissiou line is represented by an
equivalent circuit which contains only a resistor and time varying source, shown in figure 9.

Coupled lossv transmission lines can be characterised by a coupled system of Telegrapher
equations. In this case some or all of the transmission line constants, R, L, G, and C are
non-diagonal matrices. Time domain modal analysis can be applied to decouple the system
of equations into a set of independent Telegrapher equations by a linear transformation [11].
This can only occur when the coupling effects are assumed to be restricted only to the ad-
jacent lines, and the lines are identical, equal spaced and end effects are negligible. This
special case is still applicable to many integrated circuit applications, hence it is worthy of
st udv.

The instantaneous terminal voltages/currents are related to the modal voltages/currents
by the linear relation,

' = Mv, , 2= M i (13)

where.

M = linear transformation matrix, and M- 1 = MT

The relations between modal voltages and currents are,

v.r(t) ro i,.(t) + u'1_(t) (14)

where,

r0,` = Diagonal matrix representing the equivalent
modal characteristic impedances.

U d, = Vector representing equivalent modal sources.

The terminal voltage and current relations can be obtained from eqn. 13 and 14,

v(t) = Roi(t)+ ud(t) (15)

where.

Ro M ro.0  MT,

u(t) M Ud'

The Ro matrix is a non-diagonal matrix. Eqn. 15 can be rearranged such that each port
of the coupled structure can be represented by an equivalent circuit similar to a single line.,

,(t) = r i(t) + u: (16)
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(a) Coupled transmission line structure (b) Equivalent circuit block

Figure 10: Uniform coupled transmission line structure

where.

r = diagonal matrix, r0 = diag { Ro}

ud = R,. i(t) + ud(t) ,

Ro = Ro - r0 = diagonal matrix with zero diagonal elements.

In fact the term R/• i(t) is the part of the equivalent source ud(t) which represents the
coupling between lines. For an uncoupled transmission line structure u*,(t) = ud(t). The
equivalent circuit representation of the lossy coupled transmission line structure is shown in
figure 10(b).

5.2 Uniform lossy transmission lines structures with frequency
dependent parameters

Since the transmission line parameters are frequency dependent, the Telegrapher equations
can only describe the electrical behavior of the transmission line structure in the frequency
domain . A Frequency domain modal approach can be applied to decouple the Telegra-
pher equations in the case of coupled line structures. The most common approach to deal
with lossy dispersive transmission line structures is by using scattering parameter tech-
niques [12-21] . This approach offers good stability and efficiency [16].

If the reference impedance matrix is chosen identical to the frequency dependent charac-
teristic impedance, the relation between the terminal incident and reflected voltages are,

BS = s1(W) s12(w) A, (17)

where.

A 1, 2 = Incident voltage wave vectors

at input or output,

B 1, 2 = Reflected voltage wave vectors
at input or output,

12



S11(') = S2 .(20) =0

Sl2(i) = S- 21(u') = M•IEMJ'

M, = Matrix of eigenvectors of Z Y

E]
f: - CV nI

n, = ith eigenvalue of Z Y

Z = R(w)+jL(u') and Y= G(w)+j L(w)

The transformed voltage and current relation can be written in the form,

V, = ZI,+2S 21 A 2

V2 = Z, I, + 2 S 21 A, (18)

where,

A, = (V, + Z I,)
1

A 2 = ( V2 + Z 1 2 )
2

Since the characteristic impedance Z, is frequency dependent (and is also complex for
lossy transmission lines structure), it can not be used in the time domain equivalent circuit.
The initial-value theorem of transform analysis [20] show that,

lim Zc(w)= Ro

where,

Ro = Real and constant matrix.

If the matrix Ro is chosen as a reference impedance, then the impulse responses, sa1 (t) and
822(t) (inverse Fourier transform of Sii(w) and S2 2 (W)), wi' have short durations.

The terminal voltage-current relations are,

V, = Ro1 1 ±+2S A 1 +2S 1 2 A 2

V2 = R 0 12+2 S 22 A 2 +2 S 21 A 1  (19)

Hence the terminal voltage-current relations in the time domain are,

v1 (t) = ro i 1(t) + uW(t)

v 2 (t) = ro i 2 (t) + u* (t) (20)

where,

ro = Diagonal matrix , ro = diag { Ro}

Roc = Ho- r0,

u, (t) = Ro, iI(t) + u,,(t)

u* (t) = Roc i 2 (t) + Ud2 (t)

ud ,(t) = 2 s.1(t) - al(t) + 2 812(t) * a 2 (t)

udI(t) = 2 S22(t)* a,(t)+2 s 2 1(t)* a 2 (t)
1

a,(t) = -( v1(t) + Ro i 1 (t))
2
1

and a 2(t) = ( v2(t) + Ro i 2(t))

13



coupled port M

N., 2 1

Figure 11: General interconnect structure.

From eqn. 20. each port of a lossy transmission line structure with frequency dependent
parameters can be represented by a simple equivalent circuit shown in figure 9.

5.3 Non-uniform interconnect structures

Non-uniform interconnect structures are quite often used in microwave systems and in high-
speed electronics [21-261. The transient analysis of general interconnect structures ter-
minated by arbitrary load is efficiently performed by using the scattering parameters ap-
proach [21]. The scattering parameters can by obtained by simulation or measurement. Full
wave analysis provides the frequency dependent propagation constants, the characteristic
impedance matrix and the eigen-voltage and eigen-current matrices needed to generate the
non-TEM scattering parameters S(w).

A general interconnect structure is shown in figure 11, where the single ports are grouped
into sets of coupled ports. Each coupled port p (p = 1,---, m) consists of a set of coupled
ports. The whole interconnect structure is described by the overall scattering matrix S(w),

Su(W) ... SI (W) Al(w)

2: ]= : ".. 1: (21)

B,(u,) Si(W) ".. S,,(W) Am(w)

The voltage-current relationship of port p is,

Vp(w) = Rp Ip(w) + 2 1 Sp(w) Aq (22)
q=1

where.

Vp(u,) = Voltage vector of the coupled port p,

lp(w) = Current vector of the coupled port p,

and Rp = Reference impedance matrix associated with coupled port p.

A local instantaneous characteristic impedance matrix is defined [211,

R'--- I - S-1 I + S4] p

14



where.

9Sli- = lim S"P(w)

The matrices R' (p = 1,.. m) are real and non-diagonal. If R' are used as reference
impedances instead of R., the corresponding modified scattering matrix S'(w) can be
calclilated.

S'(w) =[( - T) + ( I+ T) S(w)] [(I + T) + ( I - T) S(w)]-' (23)

where.

T =-[R;' Rpl-

I = Unit matrix.

The impulse functions s'(t) ( inverse Fourier transform of S'(w) ) is characterized by
s'(0) = 0 and have a relatively short durations. Short impulse responses are important for

the stability and accuracy of the solution . The instantaneous voltage-current relation of
port p can be written in the form,

vp(t) = R' ip(t) + udP(t) ,p= 1,...,m (24)

where.

m

udP(t) = 2Z s'(t) aq(t)
q=1

Eqn. 24 can be rearranged in the form,

vp(t) = ro, ip(t) + u'•(t), p = 1, m (25)

where,

ro, = Diagonal matrix = diag { RP},

udP = I4p ip(t) + udp(t),

and R, = RIP - ,P

It can be shown from eqn. 25 that each port can be represented by an equivalent circuit
which contains only a resistance and a time varying source as in previous cases. In some
cases the time domain scattering parameters s(t) can be directly generated from a field
simulator using a time domain approach such as FD-TD and TLM methods.In these cases
s(t) can be modified to obtain the equivalent circuit representations of the structure in a

similar procedure as described above.

6 The network formulation

In general the network is consisting of an arbitrary number of interconnect structures which
are terminated by an arbitrary number of nonlinear subnetworks (as shown in figure 12(a)).
The interconnects are modelled by circuit blocks such that each port can be represented by
an equivalent circuit consisting of a resistance and a time varying source (as explained in

15



(n)

jSubnetworl4

(a) The whole network (b) The equivalent subnetwork

Figure 12: General network composed of subnetworks and interconnect structures

section 1). Hence the whole network can be replaced by a set of equivalent subnetworks as
shown in figure 12(b).

The electric behavior of each subnetwork can be described by the state space equations,

___ = A x(t) + B. u,(t) + B,, u. (t) + Bd ud(t) (26)

F,. = H z(t) + W, u, (t) + Wn. u,(t) + W'd U,(t) (27)

y = C x(t) + D, u.(t) + D,, u,.(t) + Dd U,4(t) (28)

where,

S= the state variable vector,
u, = the independent source vector,

u. = the non-linear source vector,

ud = the interconnect source vector.

The formulation of these equations can be obtained by a hierarchical development proce-
dure using a topological approach similar to the one described in [27,281. At the lowest level
of hierarchy the subnetwork equations can be developed from the basic circuit elements.
If the network is composed of m subnetworks and n interconnects, we can define n intercon-
nect matrices, NV, (j 1 1, n), such that,

uJ(t) = N, W•(t) (29)

where,

U dst M =1[U'd.. U87 IT

vector of all equivalent voltage sources

of the interconnect structures, sa,", am,

NJ = interconnection matrix of the jth subnetwork which

has only one non-zero entry (equals one)
uJ(t) = the subset of source vector u,,(t) which are

connected to the jth subnetwork.

16
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models.

Time domain
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the whole
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Figure 13: Block diagram of solution procedure

The interconnect matrix Ns assigns subset ports which are connected ta the the jth subnet-
work from all ports of the interconnects of the overall network.

7 Analysis procedure

The analysis procedure starts by fding the equivalent circuit representations of the inter-
connect structures as described in section 2. The unconnected equivalent subnetworks are
established from the lumped subnetworks and equivalent circuits of the interconnect. Finally
the time response of the whole network is obtained by solving the set of equations 26, 27,and
28 describing each equivalent subnetwork.

The values of the sources u,(t), u,(t)s ata tire needed to solve the system of
differential equations 26. The input sources u,(t) are defined at any time and the non-
linear sources i&,(t) are obtained by solving the system of non-linear equations 27 by using
an iterative procedure (such as the Newton Raphson algorithm). The values of the sources
U,(t) are obtained by convolving the time domain data of the interconnect structures with

the terminal voltages and currents. It should be noted that the disconnected equivalent
subnetworks are coupled to each other through the time varying sources u,(t). Therefore
all the subnetworks are solved simultaneously at each time step. The main features of the

analysis procedure is shown in figure 13.
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IS0 Drive Line 1 LS240

LS04 Drive Line 3 L__• 0

Sense Line

LSO4 Drive Line 60

X =0 X 1

Figure 14: Schematic diagram of example 8.1

8 Time Domain Results

Illustrative examples containing different types of interconnection structures were analyzed
by using the proposed approach.

8.1 Digital Circuit Example

A network used for the simulation of crosstalk on a microstrip array connected to nonlinear
loads is shown in figure 14 [15]. The interconnection structure consists of six drive lines
and one sense line. Each drive line is connected to the output of (ALS04) TLL, inverter at
th,- ncar end and input of an ALS240 inverter at the far end. The sense line is left floating
at both ends. The coupling between non-adjacent lines was neglected. Impulse responses
were generated by using the modal time domain approach. The time responses obtained from
simulation at the terminals of drive line 3 and sense line are shown in figures 15, 16, 17 and 18.

8.2 Microwave Circuit Example

An asymmetric two-line microstrip configuration supported by a lossy substrate is shown in
figure 19 [21]. The frequency-dependent line parameter matrices L(w), C(w),and G(w)
were calculated in the frequency range 0-100 GHz, see figures 21, 22 and 23. This coupled
lossy dispersive transmission line structure was connected with nonlinear loads as shown in
figure 20.

The scattering parameters S(wr) were generated by using modal frequency domain ap-
proach and then transformed to the time domain to obtain equivalent circuits of the inter-
connects. The transient simulation results are represented in figures 24 and 25

18



t, 1

"- 2-

1 0

"0 20 40 60 SO 100 120 140 160 IWO 200

Time (ns)

Figure 15: Drive Line 3 at near end of example 8.1.
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. 0

0 20 40 60 s0 100 120 140 160 ISO 200

Time (ns)

Figure 16: Drive Line 3 at far end of example 8.1.
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Figure 17: Sense Line 4 at near end of example 8.1.
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Figure 18: Sense Line 4 at far end of example 8.1.
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Figure 19: Assymetric two-line microstrip configuration of example 8.2. c, = 9.8, Tan 65
0.05.

C-C

Figure 20: Coupl-d dispersive lossy transmission line structure of example 8.2. R. 400,

R2 = 25Q, C = IOpF.
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Figure 23: G(w) of example 8.2: GI -~, G22 - and GI 2 / 21
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Figure 24: Time responses of example 8.2: t'1(t) - , 3 (t) - - -, and v5(t)
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Figure 25: Time responses of example 8.2: v2(t) -- , v4(t) - - -, and v6(t)
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9 Conclusion
High speed digital circuits and microwave circuits share the same problem of requiring

Saccurate iiiodelling of interconnects or imcrostrips. However, there are also a number of
differences in the structures used for these two categories of circuits to warrant significant
nIodifications on the modelling techniques. In digital circuits the dimensions of interconnects
are small andi hence, conductor losses are significant. Substrate losses are also significant
in digital -,tructures. Electromagnetic simulations used to analyse digital structures have to
cope with both conductor and substate losses. For digital interconnects, circuit simulation
has to be performed in the time domain due to the non-harmonic nature of the signals used.
This necessitates developing interconnect models in the time domain to include losses and
dispersion. The circuit simulation technique will also have to include non-linear elements in
order to simulate switching devices.

In this paper we have described how the Method of Lines can be modified to model
intercolnect., with lossv conductor and substrate losses and how circuit models of these
ýt ruct ures (aln be derivetd. In the second half of the paper, a time domain analysis procedure
hat beeti described in order to simulate entire non-linear networks including interconnects.
Several results have been given to illustrate the validity of the procedure.
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3.5 CPU-Times and Memory Needs

Dependence of circuit size N

cpu-tisne -N for the LOAD part
-- Na for the SOLVE part a = 1.2 ... 1.8

S -N for the overhead

81 2 3 4 K

cpu-time per iteration over number of transistors
(Siemens 7571)

circuit ex 1 ex 2 ex 3 ex4 ex 5 ex 6

number of transistors 58 231 642 828 1895 4822
number of equations 157 70 342 376 1040 2027
sparsity 96% 86% 97% 97% 99% 99%

cpu-times
LOAD 69% 84% 72% 80% 51% 29%
SOLVE 19% 7% 16% 18% 43% 71%
overhead 12% 9% 12% 2% 6% 0.3%

transient analysis 100% 100% 100% 100% 100% 100%

transient analysis of MOS circuits with SPICE2-S
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1. Introduction

The development and optimization of novel semiconductor devices demand the use of two (2D)-
and three (3D)- dimensional simulation methods because of the rapidly rising development costs

for new technologies and simultaneously the demand for shorter development times.

Objectives of the device simulation are:

"* Calculation of device characteristics before the technological realization
"• Optimization of technology dependent device parameters
"* Understanding of internal electronic processes
"* Determination of internal electronic quantities, which are either unmeasurable or not easily

measurable
"• Determination of equivalent circuit parameters of the devices

The shrinkage of device features and novel devices with significant three-dimensional effects
requires an increasing use of 3D-simulation methods.
For the modeling and simulation of semiconductor devices, three basic levels can be distinguished

[1]:
(1) Microscopic simulation:

Analysis of elementary processes of single carriers with the variants
(a) Real quantum models with carrier properties described by wave functions (coupled

solution of Schr6dinger equation and Poisson equation) [2]

(b) Particle models with carriers described by particles (solution of Boltzmann transport

equation) [3]

(c) Mixed models [4].

(2) Macroscopic simulation:

Use of average values with the variants

(a) Complete hydrodynamic models consisting of balance equations for carrier-, momentum-

and energy density resulting from approximations of microscopic models [5]

(b) Simplified hydrodynamic models (drift-diffusion models) [6].



(3) Mixed microscopic-macroscopic simulation:

Combination of the advantages of both methods, e.g. spatial mixed microscopic-macroscopic
description of devices [7] or microscopic treatment of electrons and macroscopic treatment of

holes (8].
Microscopic methods are an essential basis for the simulation of novel semiconductor devices, but
they are more expensive and therefore, now as before, macroscopic models are more widespread

[9].

2. 2D- and 3D-device simulation at Dresden Universities

2.1. Overview

At the University of Technology Dresden (TUD) and the Polytechnic University of Technology
and Economics Dresden (HTW) a lot of software for the simulation of semiconductor problems
has been written in the last 20 years. Most of these programs are working together in a system for
designing and optimizing semiconductor devices. However, they can also be used in stand alone
mode. A general overview of these programs is given in Fig. 1.

DUPSIM
Fig.1. 2D-Simulationes ivtion

Controin SiDoping profile

SEMICO andSSMbA aZANAI, asoAM
2DeSimulatla o 3D/2DhSimulation ou2D-SculationGaAs, Hertao Si, Ga•s, Hetreo Sii

vimafnto I- ch r ,ei tc

SEGRAF *1 Network Modeling

DEGRAF KLEINS *) MISMOD
,Y-Paramecter Static modeling

fT I tf.j of Mos transistor " HITW Dresdlen

Fig. 1. Simulation tools at Dresden Universities

Following, we will only take into consideration the programs SEMICO and SIMBA, because only

these programs are able to simulate heterojunction devices.



2.2. Physical models

The simulation of semiconductor devices is based on the numerical solution of a drift-diffusion
model. Using the electrostatic potential ip, the hole density p and the electron density n as the
vector of unknowns, these equations can be written as follows:
- Poisson equation:

div(e grad qp) - -e .(p-n + ND-N) (1)

- Continuity equations for hole and electron current density:

div~p--e.(R-G+P. divSn- eXR-G+ n'a (2,3)
S e atJ . atJ

- The corresponding transport equations:

p -- e i-p p- grad(cp - Op) + k.T-tp -.grad p (4)

Sn - -e R .n " grad(q + en) + k'T'-n "grad n (5)

It is necessary to take additional relations into consideration. Especially, the so-called band
parameters E p and E) must be included to modify the carrier transport with respect to

heterojunctions [10]:

SWEArf-WEA Wgref-Wg k'T "n Nv (6)
e e e Nvfr)

0a WEA-WEAref +k'T.ln NC (7)""e +7- (7

The carrier mobilities tiP and p. arising in (4,5) are depending from the total impurity density,
temperature and the electric field [11], [6]:

gX(ND + NA)" - 'mn + 1AD a(8)

+ ND+NA(8

t(ND+NA,T) - (ND+NA)iT)- (9)



I'(ND + (N D + N A,T)
j&(ND+NA,T,9)-I(D+ (10)

Several recombination and generation effects (Shockley/Read/Hall recombination, Auger
recombination, avalanche and alpha-particle generation, etc.) must be also included in the physical

model. For simplification, in the next lines there are only given the relations for the Auger
recombination and the SRH recombination:

RAUG -=(Cn -.n + Cp' p)'(n'-p - n2) (1

RSI - p'n-n2 (12)
(p+ po).-n +(n + no)'rp

with p0 - no - ni in most cases.

The carrier lifetimes -r and -E, in (12) are piecewise constant or functions of the total impurity
density [6]:

T Tpo'o (13)"P.0 I+ ND +NA
1+

NPef'Mef

A lot of other models can be included in the simulation. The presence of all these mobility and
recombination-generation models and the use of technological relevant model parameters

influence the efficiency of a simulation program greatly.
With the help of the programs SEMICO and SIMBA, it is possible to simulate semiconductor

devices, consisting of one or more of the following materials:

"• Si (standard material for SIMBA) • GaAs (standard material for SEMICO)
" Ge • AI1Ga1 1 As

"* In1Ga, ,As • Al 1ln, ,As
"* In.Ga .,AsyPl.y • InP

"* GaMInl.,P * AlAs

"* SiGe • Oxide or insulating regions



0
Among the above mentioned models the boundary conditions must be specified. In both programs
the same types of boundaries are used:

"Ohmic contacts: - Type: Dirichlet conditions
- Thermodynamic equilibrium

arsinhND-NA + (14)

2 2

Po -exp(ep -(P0) no " exp(8. +qpo) (15,16)

" Schottky contacts: - Type: Dirichlet conditions
-Thermodynamic Equilibrium

(Po- 2" u +' (17)
2-e 2

Po - exp(ep - qCO) n0 - exp(e 0 +qT0 ) (18,19)

" MOS-contacts: - Type: Neumann Conditions
- Constancy of the normal component

TGATE - Wg WE-WM e -e (20)
2-e e 2

eox- IoVd •,• s " si,,, ,• - s(21)
l0 Oxidde boundary - 6SC 0 Smcodco boundry -PS (1

Sp, - -SUy - -e-Rs (22)

" Oxide boundary: - Type: Neumann Conditions

'SC 4 'Semiconductor boundazy -s (23)

S - -Say - -e'Rs (24)

" Symmetry: - Type: Neumann Conditions

(Artificial boundary condition to restrict the area of the simulation. It is equivalent to an
oxide boundary without any surfe dmgand surface )

0



2.3. Numerical methods

A large variety of numerical methods can be used to solve the semiconductor equations (1-5). A

schematic overview and simple classification is given in Fig. 2.

Discramdinea IWW Mmoe dffurns

(B--

Vector dihe PPddnt do d.
Sob"m NSIM -oat C, o.orM u11-00cor

Fig.2. Classification of several numerical simulation methods for the drift-diffusion model

The spatial discretization of the equations (1-3) will be done by using an orthogonal,

nonequidistant grid and applying a box method (see Fig. 3).

z a PIMAL By using this box method it is also possible
Y yto include non-planar surfaces into the

• s simulated region.

SPs ' .% Fig. 3. Box method for the spatial
PI_'%discretizationsis

The GUMMEL/SCHARFETER approach [12] is used to handle the transport equations (4,5)

before including them into (2,3):

Constant current density between the grid points:

- Mobility is constant between the grid points

- Recombination and generation are located in the grid points



Constant electrical field strength between the grid points:

- Impurities are located in the grid points

- Charges are located in the grid points.

The discretized form (e.g. the continuity equation for the hole current) becomes now:
fSp'dA -- eJ R+ )-dV S (25)-i--e + -V

A ViR

for each grid box.

i+ M) k+1) By ordering the unknowns in the natural manner the arising

systems of (non) linear equations have a banded (Jacobian)

matrix (see Fig. 4).

• Dimensions:
- -- 3D-simulation: 10.000 up to several 100.000 eqn.

- 2D-simi lation: 1.000 up to several 10.000 eqn.
(5 diagonals)

Fig. 4.Matrix structure of the discretized equations

-I Whereas in SEMICO the simultaneous
solution method is prefered (that is, one

Set boundary conditions large non-linear system for all the
(Terminal voltages and time s unknowns q), p, n is created and handled

or-- using NEWTON's method), in SIMBA

Non-linear solution of the Poiss. equ. the semiconductor equations will be

I NEWTON's method, (m)ILU-CG solved by a successive method

I I. (GUMMEL's algorithm [13]), which is a

blockwise non-linear Gauss/Seidel
inear solution of the continuity equ. iteration (see Fig. 5).

for the eLecUron ereat.
ILU-BiCSTAB The Poisson equation is solved

I ý ý nonlinearly by doing the approach, that p,

inearsolur oeoflthe onultyequ. resp. n are non-linear functions of the
for Mhe hole cum-rt potential qp:

Sp 
- ni,.exp (26)

n nni" ,x[ _
yes UT (

Yes

o -Fig. 5: Suc saohiMion method
S(GUEMBM algorithm)



The time integration in both programs SEMICO and SIMBA is done by a simple implicit EULER-

scheme:

Yti -Yti-1 + At i" f(Yti, t i) (28)

A better initial guess is generated by a predictor method. According to our experience it is not

practicable to use an algorithm with higher degree for the time integration.

One of the most important parts of the simulation programs is the solution of the large linear
systems of equations. This is very time consuming, especially in the case of 3D-simulation. As a

typical example the CPU time distribution measurements from 3D-simulation of a MOS transistor

on the IBM 3090/VF are shown in Fig. 6.

0 Part of linear systems

sTow cp "me

Fig. 6. CPU time distribution for a 3D-simulation of a MOS transistor on the IBM309O/VF

The arising matrixes of the linear systems of equations in the successive solution method are all
very large and sparse (see Fig. 4.),:but strongly different in their properties:

* Poisson equation.: - "nearly" symmetric matrixes
(Jacobian) - main diagonal dominance

* Continuity eqn.: - strongly unsymmetric
- no main diagonal dominance

To find an optimal solver (fast and stable) seems to be impossible. We have obtained the best
results with solvers from the class of preconditioned CG-methods. From all of the tested
preconditioners (Jacobi preconditioning, Diagonal scaling, Incomplete LU-Decomposition)
acceptable results can be reached only with ILU (14]. Now for the Poisson equation we use a
simple CG method [15] in combination with an ILU preconditioner, modified accordingly to
GUSTAFFSON [16]. For the continuity equations, which are much more difficult, ILU-BCG or

ILU-BiCGSTAB is used [17], [18].

Because of the large CPU time, the numerical solution methods, especially the solution of tht

large linear systems, should be vectorized and/or parallelized. For more results see [141.

iJ i i I"I I I - • 10II0%II



1 24. Postproc•u•lng

From the results of static and dynamic simulation a calculation of small-signal parameter is

possible. At the interesting operation point a dynamic simulation of a small voltage jump at the

input and output terminal of the device will be done. With the recursive relations [19]

Re{yi+'(wo)}- Re1yi(co)}+ A,- [os( wTi). sin(w At) + sin(Ti ) cos(W At)- 1 (29)
AU W At W At I

Im{yi+1(o)) - im{yi ())1 - A $sin(wT i). sin(w At) - cos(oTi) cos(wo At) - 1]

AU I WAt W At (30)

(Ti: time step i, At: time step size, AL: current variation, AU: voltage jump)

the y-parameters as a function of frequency can be calculated. From this the high-frequency

parameters h2 1 (small-signal current gain), MSG (maximum stable gain),and MAG (maximum

available gain) can be derived [20]:

h21 -Iq (31)
Y)111

MSG - (32)
1Y121

MAG I21I.k - k 2 Refyll}Re{y22} - ReIY12 lRefY211 (33)
lY121 kY12Y211

Furthermore, a determination of scattering parameters and of a small-signal equivalent circuit of

the internal transistor is possible [21].

For the visualization of the results from the numerical simulation (internal electronic parameters,

terminal currents) several graphic tools are available (SEGRAF, DEGRAF).

0•• n lmnIlnIil|lllnnnnmmmn ........



3. Numerical simulation of heterojunction devices

3.1. High electron mobility transistor (HEMT)

HEMTs with InGaAs-channels have demonstrated excellent performance for high-speed devices.

To compare the static and dynamic behaviour of HEMT-structures of different material we carried

out 2D-simulations of conventional AlGaAs/GaAs-HEMTs and of A]GaAsflnGaAs/GaAs-

pseudomorphic HEMTs and lattice-matched AlInAs/InGaAs/InP-HEMTs of the same size and

doping levels. Fig. 7 shows the HEMT-structures used in the simulations. The gate length and the

gate-source spacing are 0.1 pm, respectively. The undoped layer between substrate and channel

acts as a barrier to avoid parasitic currents into the substrate and F vents the penetration of

impurities into the channel region. Contact resistances were neglected. For the Schottky-contact a

barrier voltage of 1 V was assumed.

The results of static calculations are 0.1 0.1 0.2 ;IM

represented in Fig. 8, 9 and 10. The Figures

show the higher drain saturation currents and S G D

the higher transconductances of the InGaAs 1!

channel devices, especially for the 20fnm SX1o ecrM-3 AJo.:3OM

Al0 .48 InAs/In 0 .5 3GaAs-system due to the

greater conduction band discontinuity of 20 nm undoped GaAs

0.55 eV in comparison to 0.33 eV for 20 nm undoped A0.paAs

Al0 .3 GaAs/GaAs and 0.29 eV for s.i. GaM

Al0. 15 GaAs/In0 .15 GaAs. The current density

distribution of the AIGaAs/GaAs-HEMT S G D

represented in Fig. 11 shows the 2D-current - Gaa

flow (2DEG) within the channel and the 20ohm ol5xe10M. 3  A0. 15 GaAs

barrier effect of the bottom heterojunction.. 2nml undoned " 0.15 GaAs

As a result of dynamic simulation Fig. 12 20 nm undoped In0.1sGaf

shows the power gains (MSG/MAG) versus 20 nm undoped A 0. 1 5GaAs

frequency. The cutoff frequency fmax s.l GaAs

amounts 480 GH7, 520 GHz and 700 GHz,

respectively. The switch-on characteristics of S G D

the devices are represented in Fig. 13. From 10 nm 1 -3 In0 .53Ga•

this and from the corresponding switch-off 20nm XIoIScn.3 •A0.48lnAs

characteristics we obtain the switch-off and 2rim undoped Al0 .48 InAs

the switch-on times. All values are 20 rm undoped Ino.5 3GaAs

summarized in Table I. 20 nm undoped Al 0.48 InAs

sl. InP

TE" -', ri," ,



e
VGS=0 VDS=2V

(a) Almamsrmft (a) •GAI /GVAar

(b) AG&AnGaAsGnAs (b) AI•aA9/dnGaA~s

(c) AJlInAs/InGaAsjnP (c) AJInAsIinGaAs/nP
10.0 10.0

-8.0 - 8.0

E

2.0 2.0 -

0.0 i0.0
0.0 0.4 0.8 1.2 1.6 2.0 -2.0 -1.6 -1.2 -0.8 -0.4 0.0

VDS [IV VGS [V]

Fig. 8. Output characteristics Fig. 9. Transfer characteristics

VDS=2V AIGaAs/GaAs-HEMT

(a) AMGaAs/GaAs VDS=2V, VGSO0

(b) AGaA9AnGaAs/GaAs
(C) ~25.0-
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S10.0-
(b) a, (a)
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Fig.10. Transconductance versus gate- Fig.11. Current density distribution
source-voltage



VDS=2V, VGS=O VDS=2V, VGS=-I.SV -- > 0 (t=0)

(a) AIGaAIwra (a) A)GaAsr/aM

(b) ArGa/•nGaAslGaAs (b) AGaA•AnGaA_/Ga

(c) AIInAsjnGaA.IqnP (c) AIInAsAnGajInP25.0 8

20.0 - 40 6.0

5o.0 4.0

10.0. 2.0

5.0 0.0--
0.0i0-.0 1

10 100 1000 0.0 0.1 0.2 0.3 0.4 0.5

f [GHzj t [ns] (xlO "1

Fig. 12. Power gains versus frequency Fig. 13. Switch-on characteristics

Table I. Calculated device parameters

IDmax Vth gmmax fT fmax toff ton
[mA/mmi [VI [mS/mmin [GHz] [GHz,•. L[ps] fps]

AJGaAs/ 398 -1.4 420 90 480 2.1 1.6

GaAs

AIGaAs/ 432 -1.3 510 110 520 1.8 1.4

InGaAs

AlInAs/ 691 -1.7 610 130 700 1.5 1.0

InGaAs __ _ _ _ _____ _____ _____ _____ __ _ _ _ __ _ _ _



3.2. Heterojunction bipolar transistor (HIBT)

HBTs have received great interest for E
application to high-speed and high-frequency

devices. To achieve higher cutoff frequencies 150 nm AI(O.3)Ga(0.7)As

we carried out an optmization of base and 50nm

collector doping and thickness by 2D- 90nm B
simulations. Fig. 14 shows the device cross 70 nm -

section of the initial AJGaAs/GaAs-HBT 600 nm C
[22]. The doping levels are: 3.1018 cm"3

(cap layer), 1.1018 cm- 3 (emitter grading), 1000 nm
5-10 17 cm- 3 (emitter), 4-1019cm"3 (base), -I--

6.1016 cn- 3  (collector), 3.1018 cm"3  0.75pm 3.2 pm 8.0 pm
(subcollector). The dynamic simulations Fig. 14. HBT-cross section

yielded maximum cutoff frequencies at a 20
operation point of VDS = 2 V, S
VGS = 1.65 V (emitter current density:

6.4"104 A/cm2 ). The corresponding gains as 15.

function of the frequency are represented in r' h21

Fig. 15. The cutoff frequencies of current 10
gain and power gain are fT = 61 GHz and r- )"0 Vc=V MAG
fmax = 98 GHz, respectively. 0VCE2VM

The results in Fig. 16 and 17 show the 5- VBE=1.65V

influence of base doping and thickness on the

cutoff frequencies. With increasing base 0- 110 100
doping the base bulk resistance decreases and f [0 z]

fmax rises slightly. On the other hand an

increasing base doping causes a decrease of Fig. 15. Current and power gains

current gain and carrier mobilities and a rise

of junction capacitances. Therefore the transit frequency fT goes down. The increasing base
thickness causes first of all a rise of base transit time and consequently a decrease of the transit
frequency. The cutoff frequency fmax is nearly independent of the base thickness because of the
compensation of the base transit time increasing by the reduction of base bulk resistance with

increasing base thickness.

The influence of the collector layer parameters on the cutoff frequencies is represented in Fig. 18
and 19. A high collector doping decreases the collector transit time due to the smaller collector

space charge region; therefore, fT and fmax rise. Because of the increase of junction capacitance

fmax decreases at higher doping levels. At a higher collector layer thickness (greater than space
charge region), the junction capacitance and the transit time, and therefore fT and fmax are nearly
constant. If the collector layer is thinner than the space charge region, fT rises due to the smaller
transit time, and fmax decreases because of the increase of the junction capacitance.
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Fig. 16. Cutoff frequencies versus base doping Fig.17. Cutoff frequencies versus base
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Fig. 18. Cuttoff frequencies versus collector Fig. 19.Cuttoff frequencies versus collector

doping thickness



3.3. In-plane-gated field effect transistor (IPG-FET)

9 A new concept of a novel in-plane-gated (IPG) field-effect-transistor (FET) device was reported

by A.D. Wieck and K. Ploog [23]. Based on a standard modulation-doped FET structure with a

high mobility two-dimensional electron gas, they used a focused ion beam (FIB) technique to

fabricate a quasi one-dimensional electron gas

(1DEG) and demonstrated device operation. isolation barrier .,
We carried out 3D-simulation of IPG-FETs to

obtain design rules for this new type of device

structure [24]. Fig. 20 shows a view of the GaAs n+ 1o n ourY

intrinsic part of the device used for the AIGaAs n+ 31 nm x

simulation with the isolation barrier (shaded spacer chann
tnGaAs i 12 nm " channel

region) of width wi and depth d between the region

gate electrode (left side) and the 1D current e i 750nm

channel (right side). The original 2DEG of a

MODFET layer sequence is separated into

four electrode regions and a quasi one- Fig. 20. IPG-structure

dimensional (1D) current channel, which is defined by two thin trapezoidal insulating lines. The

functional principle of the device is fully three dimensional because of the lateral control of the

1 DEG charge density and the small length of the quasi 1D current channel. Therefore a 3D-

analysis for calculating electrical device properties is useful. The layered MODFET structure used

for the simulation consists of a modulation-doped AI0.25Ga0.75As/GaAs heterostructure with a

2DEG pseudomorphic InO.21GaO.79As quantum well layer. Three-dimensional effects appear

because of heterojunctions in x-direction, the control action of the gate in y-direction and the

current flow between drain and source in z-direction.

The layer sequence is as follows (from surface to bottom): 10 nm GaAs (2.5x10 18 cm' 3), 21 nm

AI0.25Gao.75As (3x10 17 cm' 3), 10 nm AIO. 25GaO.75As (4x10 18 cm' 3 ). All the following layers

are intentionally undoped (a background doping of 1014 cm"3 was assumed in the calculation).

The spacer consists of 2 nm AIO.25GaO.75As and 3 nm GaAs. A 12 nm thick InO.21Ga0.79As

layer contains the high density 2DEG. The implanted isolation barriers are considered as a highly

compensated material with p-type background doping (5.1015 cm-3 ). Because of the symmetric

gate arrangement the numerical analysis is performed for one half of the device. Source, drain and

also gate regions are ohmic contacts, Because of the high doping concentration of the cap layer,

we neglect contact resistances. Simulations with a realistic surface charge density of -2x10 12 cm-2

yielded a surface depletion length of about 35 nm but a strong increase of computation time.

Therefore we simply considered a recess region of 35 nm in the calculation instead of surface

charges.

The geometrical dimensions of the isolation lines used in the simulation are: d = 810 nm, wi = 600

nm, Ic = 1.5 jim. For the total width of the quasi ID channel we used 2 wc = 600 nm. The current

density at z = ic/ 2 for VDS = 2 V, VGS = 0 is represented in Fig. 21. The dominant current flow is



VDS',2V, VGS=O

120" V05 IV]
10.0 0

~,8.0 -1

E -3
64.0 -

2 .0 -5

0.0 •2

0 r.2 " 0.80. 0.5 1.0 1.5 2.0 2.5
Vm 0[v]

Fig. 21. Current density at z =c/2 Fig. 22. Output characteristics

observed inside the channel region between the isolation lines at the GaAs/InGaAs heterojunction

(x > 46 nm, y > 1.2 jim). An increasing negative gate to source voltage yields to an increasing

lateral electric field and thus to an increase of the space charge layer within the n-channel region

and therefore to a control of the drain current. The obtained output characteristics are shown in

Fig. 22. A complete depletion of the IDEG can be achieved at VGS = -7.4 V. The corresponding

transconductance is about 18 itS.

In the following we present results concerning the influence of the isolation line width wi and the

channel width wc. An increasing isolation line width yields to a lower lateral electric field;

therefore, the transconductance decreases and the drain current rises slightly (Fig. 23). With

increasing channel width, the drain current increases proportionally and the transconductance goes

into saturation (Fig. 24).

40- ID 30 20
355' 100- 200- ID

30" 800
25- m. 20 g

S•- : ' 20=2v gr-
- 40- VCS=O V -2 V
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Fig.23. Transconductance and drain current Fig.24. Transconductance and drain
versus isolation line width current versus channel width



o 4. Codlsin

After a brief overview about the different model levels of device simulation the current physical
models and numerical methods of the 2D- and 3D-simulators SEMICO and SIMBA are
represented. The results of the static and dynamic simulation of HEMT-, HBT- and IPG-structures

show the efficiency of these simulation tools and yield contributions for the optimization of the

devices.
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Signal-processing approach to robust time-domain

OF modelling of electromagnetic fields

Alfred Fettweis, Ruhr- Universitdt Bochum., Germany

Summary: The paper offers an overview of a new method
for numerically integrating the partial differential equations

(PDEs) of field problems, placing particular emphasis on

PDEs of electromagnetics. The method, which is applicable

to a wide variety of linear and nonlinear physical problems,

consists in finding robust algorithms for modelling the

given physical system. It draws heavily from results in MO

(multidimensional) circuit theory and MD digital signal processing.

9311/0b

Numerical integration of POEs by discrete passive

modelling of physical systems

Goal: Find advantageous algorithms for numerically

integrating partial differential equations (PDE s)

by drawing maximum advantage from natural

physical properties of original physical system,

especially from passivity, losslessness,

massive parallelism, full locality.

Solution: Model original physical system by a discrete

multidimensional (MD) dynamical system behaving essentially

like the original one except that it is described by

difference equations instead of differential equations.
93/l/i



Basic idea

Model original system by a discrete MD-possive

(multidimensionacty passive) dynamical system.

Main advantages to be expected:

1. Massive parallelism. Nature is massively paralele(

due to finiteness of propagation speed.

2. Full locality of ad operations. Is realized in

nature due to action at proximity. Thus:

-only local exchange of information,

-can accomodate arbitray cý,anges of parameters,

-can accomodate arbitrary boundary shapes and conditions,

- nonlinear problems: need solve only local nonlinear equations.
93/1/2

3. Full robustness, i.e. property that can widely keep under

control errors due to discretization of

- space and time coordinates (linear effects: sampling),

- values of field variables (nonlinear effects due to

reformating, i.e. rounding / truncation and overflow correction).

For achieving robustness, recall that in nature fundamental

laws govern conservation of energy and direction of its flow.

Oue to this, physical systems often are passive.

By appropriate MD (multidimensional) generalization,

stored energy (energy density) can thus give rise to an

MO Liapunov function (MO vector function!) which in

turn can serve as basis for solving robustness problem.
93 /1/3



4 Approximation in MD (multidimensional) frequency domain

(Note Term "frequency" used here independently of physicale
nature of underlying coordinate, thus also for "wave number.")

Problem: How can such approximation be made meaningful?

Indeed, a formally good frequency-domain approximation has

significance for the actual space-time behavior only if the

system possesses suitable strict stability properties. For

assuring these, make use of appropriate passivity property.

5. Such frequency- domain concepts are very helpful also

for dealing with specific aspects off stiff equations.

6.The approach is well suited as basis for building

specialized massively parallel computers.
93/1/3a

How achieve desired multidimensional (MD)modelling (simulation)?

I.Start from original system of POEs,not from global PDE.

2 Physical systems usually passive,even incrementally passive.

This true only with respect to time physically passive.

But required: multidimensionally passive (MD-passive).

Therefore, suitable coordinate transformation (space-time!)

3. Represent transformed system by MD Kirchhoff cicuit.

4. For discretization, use preferably trapezoidal rule.

5. To ensure recursibifity (computability), use wave quantities

(instead of original field variables), as for scattering matrix.

Ensures cause-to-effect relationship: incident -- w reflected waves.

6. Thus, use principles of MD wave digital filters (MD WDFs).
93/1i/4



By using wave quantities (short: waves) instead of the

original quantities ( voltages, currentsi electric / magnetic

fields, pressure, velocity etc.),an explicitly computable

(recursible) passive MD (multidimensional) simulation becomes

feasible: MD-WDF principle (WOF =wave digital filter).

_ __'- 0 uo =voltage , i =current)

b,1 •u R= port resistance,

---- .0 o a b and a', waves:
i R -- p

Voltage waves- a'= u ÷ Ri =2 ,'a, b'=u-Ri=24R'b.

power waves a=(u+Ri)/2 ,X, b=(u-Ri)/2 •"'.

a,a'= "flowing to the right", b,6 ="flowing to the left".

Power transmitted : p=uiz a2 -b 2 z (a'2 -62 )/4R. 93/1/5

Note: Description by waves and scattering matrix is

of fundamental, universal physical importance

input quantities --..- reflected and transmitted quantities,

cause P. effect.

Closely related to this: ensuring explicit computability

by use of waves.

Note. Voltage waves lead to simpler algorithms.

(current waves: similar results as voltage waves.)

Power waves: Needed if voltage waves do not allow

us to guarantee robustness. Transition trivial:

a'=2,1a , b'= 2 -R( b

Hence, use voltage waves wherever possible,

make transition where strictly required. 93/1/6



Applicability of the approach and further aspects:

4 1. Hyperbolic problems (finite propagation speed) feasible.

2.Eltiptic problems: applicable only indirectly, i.e. as

equilibrium state of hyperbolic problem (relaxation).

3.Parabolic problems: after suitably complementing PDEs.

4..Linear problems: applicability quite straightforward.

Examples: acoustics, electrodynamics, elasticity.

5. Nonlinear problems:

-quite straightforward if "corrective" nonlinearity,

-also applicable if strongly nonlinear, e.g. fluid dynamics.

6.Can use multirate principles, multigrid principles.

7 Also: systems comprising active domains. 93/1/7

Motivation for defining multidimensional (MO) passivity

Classical concepts of passivity and losslessness are

defined with respect to time only , i.e. by observing the

energy supplied to the system during any time interval.

We refer to this as physical passivity (of MD system).

For obtaining full robustness of the final algorithm

to be derived from the MD Kirchhoff circuit, need, however,

passivity (possibly also losstessness) with respect to ali

k independent variables, say t1 to tk (later: tj to t( or tý-).

We refer to this as MD passivity, MO losslessness.

Hence, require system, N , under consideration to be

MO-passive (multidimensionally passive), partly MO-lossless.
93/1/8
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How can concepts of multidimensiona( (MD)

passivity and losslessness be properly defined ?

Indeed, in theory of MD systems, so far only

frequency domain has been considered, i.e.

description of k-dimensional (k-D) system, N , in

terms of k complex frequencies, say P, to Pk-

Then, extension of definition of positive functions,

bounded functions etc. to k-D systems is quite

straightforward for any dimensionality k.

Obviously ,this is restricted to linear constant systems.

However, systems of particular interest may have

varying parameters or may even be strictly nonlinear.
93/119

For recalling definition of physical passivity, consider k-D

(k-dimensional) system N, with k01, during time interval tr-t:t2 .

Define: p(t) =power supplied to N at t,
t 2

W(t 1,t 2 )=J p(t) dt=energy supplied to N during [t 1 ,t 2 ]

Then, N is said to be passive if there exists a

function WS =Ws(t)- 0 that is entirely determined by

values of internal variables (state variables) of N at

time t and is such that the following always holds:

W ( t1,t2) ! WS (t2) - WS (t1), 1

usually <==c> p(t)M dWs(t)/dt. (2)

If in (1,2) equality holds in all cases, N is called lossless.

Note: M=(t)o(available) energy stored in N at t.

9311110



MO generalization of passivity,i.e. passivity with respect to

k independent variables, say to t=(tl,.... ,tk)T. For this,consider:e
G=any proper k-dimensional domain,

bG=boundary of G, dF=boundary element of ZG,

n=normal at bG, i.e.,unit vector perpendicular to bG and

directed towards the outside of G,

p (t.)= MD power supplied to system N at t

W= IG p(t) dt.=total M(Denergy supplied to N.

"2 n Note: In later use,

G bGwill have to replace

t by !'.

" tl (MO= multi dimensional)
S93/1/li

Generalized definition: The k-dimensional system N is called

MD-passive if there exists a vector function, Ws(t), that

is entirely determined by the values of internal variables

(state variables) of N at t and that is such that
_WVs(t) = (WslIt),.... , W% k(t))T _- O_, t = t ,.,t )T ,

and that for any domain G the following inequality holds:

W Jp(t) dt, tJ _SdF IfG g' :D, .... lDkiD,

thus usually <===• p (t) t Q T WS. DI= K = 1 to k.

Ws(_)=energy density vector at t (MD-energy in N per (k-I)-

dimensional volume)=MD vector Liapunov function!

Wsl (1)* " ÷* * Wsk(_t)= similar to a total energy density.

If for • equality holds in all cases, N is MO-lossless.
936-112



Recall. For k-dimensional (k-0) system (k t_):

1. Physical passivity/ losslessness (t =time coordinate)

t2  dWs (t)J p(t)dt t-Ws(t 2 ) - Ws(t I) p(t) dt Ws(tt)

2. k-dimensional passivity/ losslessness:

tT Ws( W ).
G bG.

Note: equivalence marked by o==> holds usually.

Conclude: For k=1 both concepts coincide, i.e.,

1-0 passivity/losslessness =physical passivity/losslessness.

Obvious for differential Ws(t) t2)

form. For integral form: tl G t

nT-wdF -Ws(ti)- Ws(t 2 ). -- 1-G-
93/1/13

Inductance: ur= D (rL i )

"p) = ui = D (ILi2), where

D~iT D, q=(ci ...... ak)T= const., IlgM =1 , D ,Dk)T, DaK-

Thus, with L=aL, is special case of more general

10--•- k-dimensional (k-D)inductance L=(L,,...,Lk

U k
defined by u=>_ ýD.(v/•i).

Power absorbed: p(t)= ui =_DT Ws where

'AS= (W$1,...., Wsk)T, W • L.,, -K= 1 to k

Obviously, p(t)=_ WS always holds.

Hence,Lis passive, even lossless, if LK. 0, x= 1 to k.

Similarly: capacitances, coupled inductances.
93/1/14



Resistance u=Ri, R-O, p(t)= ui= Ri_--0.

R I aept~TeHave p(_t)t_ Wsfor WS=O.

U

Thus, passivity requirement satisfied with Ws=0.

Ideal transformer of ratio m: u 1=mu 2 , i2 =-mi1 .

il rol i2U i U2 i2 0 Vt

Lh~jD I ý U2 Have p(t)=DTW, for Ws=O

Thus, is passive, even tossless, with Ws= 0.

Holds in particular, of course, for m=-1 , as primarily

needed in present context.

Note: Similar results for gyrator, circulators.

93/1/15

Consider Kirchhoff circuit with b branches, P3=1 to b.

To each branch 3 there belongs current ip , voltage up.

Then, for every node: Kirchhoff current law holds,

for every loop: Kirchhoff voltage law holds.

Power absorbed by branch 0 : uPiP. b

By a known fundamental theorem: upip =0, i.e.,

conservation of power guaranteed.

Hence, passivity of circuit is guaranteed as soon as

all its elements are passive. (Similarly for losslessness.)

Consequently, MD Kirchhoff circuit is passive if all elements

are passive. The latter is easy to check, e.g. by verifying that

inductances, capacitances, resistances are _-O.



How can we obtain an MD-passive system from a physically

passive system N depending on spatial coordinates

tito tk_1 (thus xy,...) and time t ?

1.Replace t by tk=tk(t) having same dimension as t1 to tk_1

Vk=dtk/dt sufficiently large -0. Simplest: vk=const.,,0.

Assume that N has finite propagation speed.

2.Apply coordinate transformation t---,.t'= (t j ..... t:)T

(simplest: rotation) such that original causality with

respect to t becomes causality with respect to tj to t'

thus, for any movement taking place,then dt.'/dt • 0.

3.[f N was physically passive, then after transformation

will be passive with respect to all ti to t . 93/1/17

Approach by coordinate transformation t -- t--t

Original coordinates t: (t= ,...., t k)T , tk=tk(t), t:time.

New coordinates: t'= (t,.... t t'k) t= H t' Vk dtk > 0.I- - - '- -- "dt
H= k x k matrix, preferably orthogonal.

tk should be main diagonal of t'-system of coordinates,

i.e.,all entries of last row of H should be

equal to a same positive constant.

b= b, 1l to k,
bt),

D (DI r , . ,Dk)T , '=(;,.. D )T," D'= HT D

For problems with 3 spatial coordinates plus time,

have: k=4, othus: tj=x, t2 =y, t 3 =z, t 4 =t4(t).

93/1/18



Suitable choices for rotation /transformation matrix H-_

For k =2: H = I 1 -

For k=3- H= 1/46 1/ -f7 T

1/'(7 1iV / f3" /-F
S-1

Cdic ty ). wit H H -2

1 -I-0 0

For k=: H=diag 1 1 1 10
f2'•1 - F12 1 1 1 3

1 1 1
9311/19

Simple possibility feasible for k= 2m ,m( IN:

Use Hodamard matrix ,- always orthogonal.

Choose symmetric type , i.e. with _H = H T= H-1

k=2,: H= - -- 1 1

21 1 1

Note: Hadarnard matrices also exist for many

cases where k= multiple of 4,.

93/1/120



Example of a suitable orthogonal matrix H for any k L2.

Define for this H=HkI Uk-2_... B1

where _.H zdiag (HlI, H,,...., HiK,k-_) , x= = to k-I

1 ~for X* K (then, scalar)

A-= '6 (I -for XA= (2X2 matrix).

Find: H= ((H-K)) "l n(-.I) for X!-_Kk-1

-•./(x~)" for X=K4.I
where H. =HK, 1 / •Fk' tar x=k

0 otherwise

Obtain thus in particular tk=9 I .... ÷t'k).

Hence, tk is indeed the main diagonal of t- coordinates.
93/1/21

For discretization in space and time, use sampling

raster generated by equal spacings along all tj to t.

This has added advantage that it leads to very

efficient grid in actual spatial variables tl to tki .

Examples: For k-1=1: Get 2 interleaved sets of points.

For k-i = 2: Spatial grid points form equilateral trianglesi

in fact, 3 consecutive such grids are distinct but form

on average again equilateral triangles, i.e. with

altogether 3times higher point density.

For k-i = 3: Spatial grid points are centers of densest

ball packing i 4consecutive such grids are distinct,

form on average again densest ball packing, 4times denser. 931112;



Sampling raster obtained for kz 2 by 450 rotation:

\ \ \ \ \ , \ t j \ \, \\
'.\ q\ \ 0\, \ \ \\ t2= t2 (t)

\,, \\ The computations for
\\ a\r

\ \ \0any point require
\ \\ \

\ "a\ \\ \\ \ only knowledge

of results

obtained for points

on previous lines.

t\~ Henceall points on

a same dashed line parallel to the tl-axis can be computed in

parallel: Massive parallelism available

93/1/23

Alternative representation of sampling raster

obtained for k= 2 after 450 rotation.

"t2=t2(t)Mt2 -- - ---------- -ot ---o- -o- -

0 -•- - _ _- 0

-0-------- 0 -0-----

Observe t2 - axis ("time"- axis) is main diagonal

of the new coordinate system t.

93/1/24
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'ti3  F o r k -3 : P ro ce ss in g in 3 -d im e n s io n al (3- -0 )

raster after appropriate rotation.

plane perpendicular to main

diagonal C' time" axis
I 

aI5 4Computations 

for all

points in planes parallel

to the one shown can be carried out simultaneously.

Extends to any number of dimensions (hyperplanes!).

Thus, true massive parallelism available, i.e., extremely

high speed achievable at expense of added hardware.

9311125

For k=3: Planes perpendicular to main diagonal ("time"axis).

In planes of same colour, the sampling pattern is the same.

9311/26
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0 0

° I ° -•

Sampling patterns existing in planes perpendicular to the

diagonal ("time"axis). These patterns alternate between

3 distinct types of equilateral triangles marked in red,

blue, green. 93/1/27

Generalized trapezoidal rule (constant- parameter case)

Given: u=D(Li)= LDi, where

D=cTD = Z(D1 ,Dk) t -A= 1 to k

a I .. ak)T =const., fllI =1, To= const. -0.

Apply conventional trapezoidal rule in direction of a.,

i.e.,writing t .c, apply it with respect totc. Obtain
2L.

u (_.)÷+u(t!-T)=R (i t) i (I_-_.)) where T'= a.To, R=- To

i.e.,in compact notation, u= RA(r) ( ii.

Define voltage waves, a'=u÷Ri, b'=u-Ri

Find: alt) -- F A. b'(t)=-a'(t-T)

Important: Holds for R (1) if R (qt) independent of t.

Similar results for t', To, D', Q', Dý , %8, k',T' 93/1/28



Generalized trapezoidal rule (nonconstant case)

Given: u= •-RO(i), thus U TO((i), RR(tR=) -2L-

where D=aTD, D=(D, Dk)T, D-=b/ýtK, -K= 1 to k.

a=(a•, . ak )T = const. , Ila11= 1 T= aT , To = const. - .

Apply conventional trapezoidal rule in direction of a,

i.e., writing t=ar ipply it with respect tot .Obtain

M R/") Mt_.+ (u /ý-R ) {_-T_ _- (FR• i) } t) - (Vr'i } t__

i.e., in compact notation, u/i[R =A(I){ 1-Ri}

Define power waves, a= b R b

FindT bt_) =-a(t-T).

Sim ilar for t', To, D', ', D W, T,' 9T_.
93/1/129

More general coordinate transformation t - t_'

As before: t (t1 , .... tk)T , = (t) Vk .0.
However:t'= (ti, .. ,tW)T, W k'k 3 H t,

where H =kxk' matrix of rank k, HH-R=Ik

_H-Ra right inverse of H, 1k = unit matrix of order k.

Directions determined by tj to tlý, should have maximal

symmetry with respect to the direction of tk , thus of t.

All entries in last row of H must be positive.

There must be at least one H-R such that

all entries in last cotumn of this H-R are positive.

Have: DO:= , K=I to k D b= - ,-K==I to k

dt-K dtjK
D (D1, .... , DOkT D, _ '(O ,....' 0,EkT D' HTD

9311/30



Suitable matrices for more general transformation"

/1 0 -1 0 0
For k=3: H (0 1 0 -1 0

H-~~ ~ R HTd=agIor 2 .

1 0 0 -1 0 0 0o
For k = 4: H 0 1 0 0 -1 0 0

0 0 1 0 0 -1 0

1 I I 1 1 1 6

H-R-H.gdiag ( , 2 I ,' 6.6

For 6 = 1, leads to standard (canonic) sampling ,

For 6 =2, leads to checkerboard sampling if k=3,

to generalization thereof if k= 4.

Is easier to program, but less efficient than rotation. 93/1/31

Checkerboard sampling explained for k= 3,

thus for t1 , t 2 = spatial coordinates ( x y), t 3 t 3 (t).

t2
0 0 0 0 0 0 0

x X x x x x
--- 0 0 0 0 0 0 0

X x x x x x
--- 0 0 0 0 0 0 0

xx x x x x
0 0 0 0 0 0 0

ti

For consecutive time instants, use in (t1 ,t 2 )-plane

(:actual spatial domain) alternately the points

marked by "o" and those marked be " x" 93/1/32



Checkerboard sampling and generalization thereof:

For any k,have 2 distinct spatial sampling grids

between which process switches back and forth in

alternating time slots (like between black and white

fields of a checkerboard). This is easier to program than

for the grids in the rotational approach , but is less efficient

(requires higher point density for same accuracy).

For k-2, can be made identical to rotational approach.

For standard sampling in ti to tk' , obtain only

one spatial sampling grid. Is even easier to program

than checkerboard approach. Comparison of efficiency

requires more detailed investigation. 93/1/33

For general transformations,all condiderations for

obtaining MD causality and MDpassivity hold as

before if properly applied to t11 to t4, instead of ti to tk.

For discretization in space and time, use again the

sampling raster generated by equal spacings along all

new coordinates t, to tk,.This puts requirements on H

in order to guarantee that obtain a consistent raster.

The (discrete) values of the t; to tj<,fixing a given knot

(sampling point) will then usually not be unique,

but this is of no disadvantage.

For approximating the differential operators use

trapezoidal rule in same way as before. 93/1/134



Examples,with 1-0, c-O , rO , gtO, Vk=ConSt. -0:

1. Transmission line, k=2, t(t 1 ,t 2 )T , t=X , t2 = v 2 t,

2 0 *i b'-u =fl(t) v2c u b t
bL- r,, t2 2 bt6 -

2. Two parallel conducting plates, k=3, t= (t1 ,t 2 ,t 3 )T

Y1biK .K u- =fK(t) -K.=1, 2 ti = x t2= Y

v3 c b+gu L b i2 f3 (1-) t 3 = v3 t6 t3 btl bt2

3. More generally, k _2, t=(tl,....,tk)T , tk-Vkt,

V k I • r ' V u = _f ( t ) , .. .I, k

V=* T

VkC -b u V Ti_= fk(l). L: U .. k -1
f--k = ( ,...,fk-1 )T

For k=4, equivalent to standard acoustics equations. 93/1/35

For k=2 (transmission line), assume
I =lI(t, ) .0 c=c (t, ) -0 , r=r (t)_>O , g g (t ) _O,

t=( T1, tl= 2 vt v2= con st.'O -0- i 2 •-

Find: l"- 1,0Di+ rI t' - 1 -o•

i2  1,01 I

1,i

where

V'2'Oj-2-D1, r2 D:•-01÷2, e 1 F2fl (_) / ro, e2= V"2' f2(t)

l'-v 2 i/ro, L"=v 2 cro, r'=-,7lr r/ro, r"=lF2"gro,

robeing a constant such that ['t_1 , L"_ t1.

Requires l/v 2 cro.v 2(, thus v201/4/minCmin

Then sufficient that , e.g., ro : Vj[min/cmin 93/1/36
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Applying uniform discretization steps Tý in the

tand tj directions , the previous continuous - domain

MID Kirchhoff circuit is transformed into the

following discrete-domain MID Kirchhoff circuit

12 f R5 , A (1,O0) Al

where T'=(To, V~)T = a r2T., (a )T

R1=r', R3=r", R5=R6= 2 / T

93/1/37

Applying the principles known from WOF theory, the

MID Kirchhoff circuit gives rise to the following

signal- flow (wave -flow) diagram (algorithm!)

whereo R1 to R6r as gve prvoul

and where R7 :R 8 =4/T14
93/1/38



T 3o seb3 ad d a2

ab R3 a 2O : so 0 -'Y1 -Y2

R- -t -IR2_ 0•

bl ,b2

Three-port series adaptor and a corresponding

signal-flow diagram (port 3= dependent port).

Yl=2RI(R,+R2+R3) , Y2= 2R21(Rj +R2+R3)"

93/11/39

n ports (numbered v= I to n).
ii ,

1c = -- Rv = port resistance.

l ~Vl * V2# " + ... •Vn = 0
1'o

R, n)iInb11n12 i

anbnf Cavvv Rviv bv=vv-Rviv

nv Rnn n no

Thus, have 3n equations in 4n variables.

Eliminate all vv, iv. Solve for the by

av -v=2 .) yv=32Rv/(R R .... Rn

93/1/40



VR29 
b2 C

b2  a 2 l b2 12

R2 Series adaptor

V, - - with n ports

Vi•b 1  R , v=I ton

l bV=av.-yV(a) . . . . " n)

yv= 2Rv/(RI. R2 ... Rn) y1 +y 2 ..... •*n= 2.

Can choose one port as dependent port,

e.g. v=1: y, = 2 - Y2 -y 3 --.- y.,. Thus, need

n-I multipliers (not n 2 )= number degrees of freedom.

93/1/41

z Zo Zo (•) Symmetric

two- port
Zb itand various

0 0equivalent

o representations.

7 2

0 -

T- configuration, ® lattice configuration,

(©simplified represention of ' , (NJaumann structure.

Z',Z" :canonic impedances, Z':Za, ZM:Zo.2Zb.
9311/42



-1/ i-2 ao N'(n)C1

'3I I
u 1 R;i RjI2Ib3--- 

T I-

u• 01 --- "-0a 2 3 b4
bai• 3_. 2b 2 R. ý

I T
C04---* Rý 1

U4 b4 .0- a3 a4

0ob N"ln b2
R; Rl' R

@A 4-port circuit involving an ideal transformer.

( Corresponding signal-flow (wave-flow) representation.

9311143

®®'

RI I N '(n) 0 R_ O),,n 0 R

b3 b4 --

'3 b4,

Rj' FRý

®•and Q•Two adaptors needed for n=1 and n:2.

® )and (D Corresponding signal -flow diagrams.

93R1R414
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Let now k=4, and I,c,r~g be not necessarily constant, i.e.,
1=-1(t) , c c(..) , r-rt) , g-g(_) , 1z-(ti, t2,t3, t4 ) T j

although 1it) and cl.) independent of t4,=t 4 (t), t-time.

Then:

D4. (il ril - D, ( r4 i.) = el (t-

040(i2) - r12 - D2(r, 1i. )=e2 (1_).

0 4(1i3 ) *ri 3 0 3 (r 4 i4 e4 M()

Q4(r i10 -02( r4 *2) - 0)3( r4 Y3 ÷ D•(rz cid) r,42g i4-e4( t_)

where
D-= ItK = 1,2,3J4

Note: If parameters not constant, there does not exist a

steady-state with constant amplitudes.
93/1/45

For k= 4, transformation approach becomes, with x= 1 to/ :

tYt• .. ,t)T, _D= D1,,...., ,D )T, DK t4 W,
b /tt

S, )T D= D')T D': b-- t t H t'

Simplest choice for H :
Hadamard rotation,e.g. H=HT

____ ____ ____ ____1U

Then: Di (D" - Di., D , O.,= i .,.3 O '- )j i=1I to 3

S2 i i-3 4 2 i i3

where Y:D'D , =:D4.. D" D'3 01

Also: D'O=04+÷D, D2 := D.O2, D :. O3 ,

S- D.- ,, OD' = D4.- D2 , OD; D -D3 •
93111/46



'4 i!

2e "

-1/1

r'-1, ODl'+Oi÷Oi•D r,

Circuit for k=4, obtained by Hadamard rotation.
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Applying Hadamard rotation to Maxwell's equations:

CT4• (c'E, I (D; - 0; ) E6÷ ( D" -OD" ) E.÷o WEl 0

Dj(e'E3) (DZ -D7) E-.(D0-DZ) E6-o'E3 = 0

0(e"E4)÷ ( Do- D") E3 ÷(0"-D ) E2 = 0

D(E-"E5) - ( D'3 -) E, D( - D )E 3 :

D5((E"E 6) (0D; -DI) E2 .(D"-D•j) EI= 0

where E'--2ro v4 E, it"=2v4 1./ro , o02=2 0 r., ro=const. >0.

D;'= D, -.0o4, D= D; ÷D• , Do =DD E3.i =ro Hi, i= 1 to 3,
o. =• Dj , -D,: D; D O, -D D; = D; .ODi, D" D j *O Dj OO .Dj .D% D4

Leads to structure with nonnegative elements if

v4_2t 2/IVI-rninPmin and, e. g., ro=Výýin/cm~in" 93/1/48
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Definition of No in the signal -flow diagram obtained for

Maxwell's equations, the shift operators being chosen,
for illustration, as in the top part of that diagram:

L N0

0 /I/0

!+ +

SRo Ro
0- --0 -

o • INo so 0

93/1/51
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New results in transient analysis of crystal oscillators
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Department of Electrical Engineering

University of Wuppertal
Fuhlrottstr. 10, D-42097 Wuppertal, Germany

Phone: +49-202-439 3008, Fax: +49-202-439 3040

Introduction

Invented during the 1920's, crystal oscillators are one of the most widely used circuits in
electronics. There are a variety of applications in discrete and integrated technique, such
as microprocessors, frequency standards, clocks, PLL's and others. In a sharp contrast to
this until now no tool is available in the domain of computer-aided design and analysis
which allows an accurate and fast simulation of such circuits. In general, this prevents
optimization for a given application.

The approaches found in the literature to analyze oscillatory circuits can be subdivided
in two classes:

1. analytical approaches for certain oscillator configurations, such as for the CMOS
Pierce oscillator e.g. in [1], [2];

2. algorithms that compute the steady-state of nonlinear circuits with periodic re-
sponse, based on harmonic balance techniques, newton methods [3], hybrid har-
monic balance methods [4]. extrapolation methods [5] and others.

Nevertheless the common approach in circuit simulation is the so called brute force
approach, i.e. the numerical integration of the differential-algebraic system

F(y,r,t) = 0, yO = y(O)

with the n-dimensional vector of unknowns y arising from the circuit description for
t E [0, tot] until the transients have died out. It was shown in [2] that the start-up
time of common Pierce oscillators takes a minimum of 1000 periods. So the brute force
approach will be a very time consuming process in all cases.

Formulation of the problem

The task to be solved can easily be described, if we consider a result from common

I, -. . . . . ] m m m .. .. . .... . . . . . . . .. . . . . .
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transient analysis, given in figure 2, for the 16 MHz oscillator circuit as drawn in figure
1. The equivalent circuit for the quartz crystal is given in figure 3.

5

uoP

4 A

Ri
3

IC1 C2 T.C

0 .002 .004 .006 .008 .010

Figure 1 Figure 2 Figure 3

The development of the output voltage for a given set of parameters depicted in
figure 2 was computed with integration formulaes based on trigonometric polynomials as
proposed in [6], that are specially suited for this problem of a near-sinusoidal oscillator.
ft can be seen that approximately 160.000 periods were computed and as a result nearly
3 millions integration steps have to be performed. Even for this relatively small circuit
the computation takes several hours on a high performance workstation. This is not
acceptable. In contrast, the desired information, which allows a compl+ce overview about
start-up behaviour (including steady state), would consist of some sets of values for
distinct time points ti,

M0  = {Y1.OY2,07Y3,OY4,0, ... ,yn,o}

M1 Y {y1.1,Y2,1,Y3,1Y4.l,....,Yn,,}

NM2 = {Y1,2, Y2,2, Y3,2, Y4.2,.,Yn,2}

M 3 = {YI.3, Y2.3, Y3.3, Y4,3 .. .Y,,3

i = {Yi,., Y2., Y3.,, Y4,,... , y ,i

M ,s {YI.s, Y2.s, Y3., ,Y4,s,...,y,}

separated At in time, which allows a reconstruction for every timepoint ti, i = 1, s.
Index s indicates the steady state. Without loss of generality we can add a suitable phase
condition. e.g. y, = 0 for some i Z 1,.. .,n. Because of high redundancy, At = tj+ - t, >>
T, where T is the underlying period of oscillation. If it would be possible to calculate
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exclusively only these sets of values, separated hundred of periods in time, our task would
- in principle - be completed.

Some basics

That this is indeed possible, will be shown now. The approach we recommend is
founded on several well known properties and describing models of quartz oscillators.
These characteristics lead to a 'hierarchy of state variables' and can be effectively exploited
in the numerical computation. A stringent mathematical foundation of our algorithm is
not vet available, but is the topic of future work.

As described in [2], the crystals high quality factor Q has as a consequence that the
current through the resonator, IL, can be assumed to be sinusoidal, even if the voltage
across it is strongly distorted. Therefore, under an energetical point of view, exchange of
energy between the resonator (resp. its motional arm consisting of R,. Cr and L,) and
the surrounding circuit takes pl. _e only on the fundamental frequency, Wi, given by

1";M = VIEJ Cr

So the nonlinear circuit can be characterized by its impedance at the fundamental fre-
quency [21,

4- V,
ItL

were IL is the complex value of IL and V, is the fundamental component of the voltage
across the resonator. Introducing p, the value of frequency pulling,

W - Wm

the impedance of the motional arm can be written as

Zm = R,.+J -2p

For start-up of oscillation, the relation

-Re IZ,, I > R,

has to be fulfilled. The fundamental component of the voltage across the resonator, of
current itL and the voltage uc across the capacitor C, will therefore build up with the
time constant

2L,
T R e- j{Z,,} + R ,

Hence
Ret jZc1 }+Rr

11C,mar. 
1
Lmar - 6'7') C 2Lr
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and the behaviour during start-up depends upon the motion of Re{ZZ, } in time. Because
Z, changes only slowly, it inay be assumed that r is local constant, while the global
beltaviour of r can be approximated as piecewise linear. r can be calculated in two ways:
First it is possible to extract Re{ZIZ } by Fourier analysis and the second way consists of
computing the logarithmic decrement, which is defined as the natural logarithm of the
ratio of two maxima a period apart. Both methods are based on the results from the
numerical integration. The details of this computation can not be explained here. It
should be noted that both methods deliver the same result if we consider that the second
one also includes the dc portion of the above mentioned signals and therefore increases
r to 7', which at all has no effect on the computation. At preseiiý, we use the second
method: the rate of growth in interval At =t,+ - t, is the averaged value

-- + I + rJ,

The values of r, can be used, if we consider that the 'figure of merit' Q of the quartz
crystal

Q
R,

can be interpreted as the ability of the resonator to keep the stored (electrical) energy
according to

decreasc in energy per cycle 27r

Total energy Q
It is to be expected that this observable physical property is carried over into and can also
be observed in the field of numerical integration. This is indeed the case. The results on
several types of crystal oscillators (Pierce-, Colpitts-, Miller-, Emitter-coupled, Common
base Oscillator) indicate that the variables which represent the energetic state OZL and uc)
overwhelmingly dominate the behaviour of the circuit under (numerical) investigation.

In other words: If in a certain set of values of the state (and nonstate) variables

-'1 ,1 {Yif . Y2.,. Y3,.. Y4 ....... Yn,,}

one member (say yr., = uc-,) is changed in its numerical value according to Yi., • y;,i
Yi,,+i, then. after a certain amount of time (which has yet to be specified) necessary for
possible adjustments. the circuit will enter the state

•11+1 = i{YI.z+I. Y2.z+I.Y3.,+I.Y4.,+I ..... Yn,,+I}

Therefore the transitions

M, "* .l• {Yi.,.'Y2.2,,Y3.,. Y4 ..... Y•.,} -+ A.+ 1

can be made. The second transition heavily depends on time constants inherent in the
circuit, as indicated by 7,.. In the ideal case of a delay--less circuit, the new state M,+I
will be reached "imnediately'. as will be seen in the next section. If there exist one or
more 7,- > '. the solut ion manifold associated wit h .l1,+! will be reached according to and
delayed by the dominat ing tim- constant.
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Two examples

The algorithm based on the above considerations is a very simple one; in every step
from M, to M1 ,+ the value for uc, is multiplied with a factor, whose value depends on
the dynamics of uc; the elapsed time At = t,+, - t, can be estimated according to

At = 7 ,+
luc,i

if we consider that r' can be approximated as piecewise linear. This algorithm was imple-
mented in an experimental version and several oscillators up to 25 nodes were investigated.
In all cases the reduction of computation time was drastic; the results are accurate enough
compared with ordinary transient analysis.

The first example represents the ideal case: an emitter-coupled oscillator (1 MHz)
without any r7 > T, as given in figure 4.

C2

R3 R5 R7

;Fh- 1 N4148 C

C3
F • 2N5179

CI

R 2  R 6

R4 A1 MHz I1N4148

1 N4148I

Figure 4: Emitter-coupled oscillator, 1 MHz

The results of the computations are depicted in figure 5 and 6. In figure 5 the envelope
of uc is drawn, in figure 6 we see the phase space representation (i'L (horizontal axis)
vs. uc). The total start-up takes approximately 266.000 periods. Our algorithm only
computes 60 periods and the number of 'giant steps' (with a stepsize H > T) is 16.
Here the transition from M, to Mj+i takes places in about 4 periods in every step. The
statistics say that on the average only 0.085 steps per period were performed, so that the

S...... .. ...... n~a nN,,,,u -1,- --- --- .-. • - ,,m nmn m H i ,-, mnna,,,
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reduction compared to (the best possible) pure transient analysis is about a factor of 100.
In figure 6, the performed jumps in phase space can be seen, in connection with the phase
condition IL = 0. The process of reaching the limit cycle is obvious and can equally be
expressed by

lim -Re{Z }I R,.
t •00

'C. 5 l [eet9n3 o f .,onator Ci ft.3l 3 E[tecoto o3 r,on.to0

R_! 8 2 Ct - ' 6 0 fF R_1 8 2 Oh 1_ (IF

k_2 4 7 *7 0- . 4 2 H R-2 4 7 hOha L_ 4 2 H
R 3 430 Ch ýh R-, 240 0 Ch. #-1 43• 0 Ohrm R_r 2-40 0 D hm

4_4 47U ' •' 4 p N 4 4700 Ott O C3p.4 P "

R-5 5 6 k 031 D 50 58 nA R85 5 6 k~ht. 301 50.5 8 A

R6 4 , ,•• s:: 955 R6 4 7 h0 0 0 955

888 530 0 O2t ToT r an ceG

-9 5: 0 h L 0.0 I30 r. R n h0 9

k_30 5IM 0 '0m xoe O-Og 8_0. 530 0 Ohm 8.oo .0.-9

0 I .
22 8F C 2 0 1 *2

0_3 03 L t *cmp perio., 60 I _3 035 itotip periods 60

3.•60 peri 266 ]29 2 tot.; perioos 256 129

t-P' on uiteps pe. P"riod 0.-85 I ,.. in.. otepo per Period- 0.085

5 2 50000 5-.

50000 - 40000

4 300 3 400

-40000

, 5 0 :S 2, 5 002 001 0 001 .002

Figure 5 Figure 6

The second example shows the influence of time constants r,, > T. The oscillator in
figure 1 has the dominating time constant r- = RIC,. The nominal value is r, ,t 22,4T,
which gives rise to a noticeable delay. The effect can be studied, if we start the integration
with values yo except for uc, which is initialized with the steady state value of ucma.
Figure 7 shows the effect of various values of r, on the development of the output voltage.
This voltage reaches its steady state value delayed in accordance to the time constant.

If we perform the start-up analysis, we see from table I that the number of periods
computed during one giant step is proportional to the value of Tr.
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= 22.4. T 5.6. T 1.4. T 0.35 T

# total periods 123.690 67.932 36.409 28.978
# steps 83.003 63.917 30.410 21.883
# comp. periods 396 299 145 104
# giant steps 17 17 14 14

_Trods 23.3 17.5 10.35 7.42,giantatep

'[able 1: Impact of r7 on the no. of computed periods per giant step (averaged)

r, r�1220. 0 .1]' . ..9 .0 0 I03000 .sr 2 . I *_1 O C O• €3, 4. .2 .0

c'. I a

Cs Ii 2 00 c:,. . .0~. JO . ..... 00

16 M.1I0• . 22000 0 . .10ol . 102400 0 . 10o . 020000 0

. . . . . . . .. 3.00† †-†.††......0.0... . . . .... . . *0

Figure 7: The effect of three different time constants 7, = RICG

Conclusions

We have shown that transient analysis of quartz crystal based oscillators is indeed
possible by extracting only information from timepoints hundreds or thousands of periods
apart in time. The characteristics of these oscillators, i.e.

* drastic differences between the timeconstants in the circuit and

* the typical behaviour of energy exchange between resonator and nonlinear circuit

can be exploited successfully in a numerical algorithm. Future work will concentrate
on a strict mathematical foundation of the cited phenomena and on a more elaborated
algorithm.
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Derivation of Stability Condition
for the Time Domain Method of Moments Algorithms

Using Functional Analysis Approach
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ABSTRACT

This contribution presents the derivation of the stability condition for time
domain method of moment for linear hyperbolic differential equations The
algorithm uses the method of moment approach for space variables and finite
difference'scheme for time. The stability condition of the algorithm is derived
by investigating the properties of operators in suitably defined Hilbert spaces.
The method discussed in this contribution has been developed in context of
the time domain analysis of Maxwell's equations but the approach is general
and can be used for other explicit algorithms.

INTRODUCTION

Functional analysis is one of the most powerful tools of the theoretical
investigation of the basic properties of numerical methods. The methods of
functional analysis are conmnonly used in the mathematical physics, numer-
ical mathematics and computer science but seldom in engineering. At the
same time the engineering creates demand for new more efficient numerical
methods which would provide a sufficiently accurate solution as fast as pos-
sible. This results in the constant improvements of published algorithms by
researchers who adapt them to their particular needs without investigation
of the properties of modified algorithms. For instance, explicit algorithms
for the solution of initial value problems have recently received much atten-
tion among researchers involved in the numerical analysis of electromagnetic
fields. Two methods belonging to this class, known as finite difference-time



domain (FDTD) and transmission line matrix (TLM) algorithms have in-
tensively been developed in the last decade. Their salient feature is that
electromagnetic field is analyzed in the time domain and the saunples of rel-
evant physical quantities at nodes located at the discrete points in space are
used to represent a physical continuum. These two methods are constantly
being improved. The improvements include the application of graded meshes
or non orthogonal cells, application of local al)proxinmations or extension of
the basic algorithms to the new class of materials such as ferrites or disper-
sive media. Also new concepts of space representation of fields have been
introduced. The sampling at discrete points can be replaced by the expan-
sion into the series of basis functions and the expansion coefficients found by
the method of moments procedure.
Recognizing the progress achieved in the recent years in the time domain
analysis of electromagnetic fields, it should be noted, that the explicit al-
goritlims underlaying these methods are not unconditionally stable mid the
imp)rovements introduced to algorithms affect their stability. In this contri-
bution we shall present how the effects of the algorithm modifications can be
investigated using the functional analysis.

STABILITY ANALYSIS OF EXPLICIT TIME DOMAIN
ALGORITHMS

Let us consider a hyperbolic differential equation

a2

t-•f + Lf=0 (1)

where L is a linear elliptic differential operator with positive coefficients. The
hyperbolic equation of this type, supplemented by conditions at t = 0 can
be solved for t > 0 using a classical finite difference explicit algorithm. For
L being a Laplacian the stability criterion for the algorithm is known as the
Courant condition. For other operators it is convenient to use the methods
of functional analysis. In [21 such an approach was used for the case of finite
difference representation of L. The theorems used in that case are general
so it is very instructive to show how they can be applied for other explicit
algorithms.



To investigate the stability of a time marching algorithms for the hyper-
bolic equations it is useful to present a problem in a canonical form

02(2
(I + A'tR)jt-f + Af = 0 (2)

Where I is the identity operator.
The time marching algorithm for the above problem is stable if the following
conditions are tulfiiled 121:

A=A*>0, R=R'>0 (3)

R - 0.5A > 0 (4)

In other words for the explicit algorithm to be stal)le it is sufficient that both
operators A and R be self adjoint and positive and additionally the operator
R - 0.5A be nonnegative.
A linear operator F defined in a Hilbert space (H, < >) is self adjoint if
for any x, y E H

< Fx, y >=< x, Fy >" (5)

An operator F is positive F > 0 (or nonnegative F > 0 ) when for all
x E H, x /- 0 we have

<Fx.x>>0 or <Fx,x>>O (6)

The canonical form (2) is obtained from (1) by simply multiplying it by 2

and writing the result as

A~t 1) 2(7

(I+ -•I)-f + 2Lf=0 (7)

Comparing (7) with (2) we get R - I/A 2 t and A -- 2L
If operator L is symmetric and positive than the stability condition is

>IA2t 11 IIL1I (8)

or

< ,II (9)

It is seen that the stability depends on the norm of the operator L. The
norm of the operator depends on the space it acts in.



STABILITY ANALYSIS FOR THE TIME DOMAIN METHOD

OF MOMENTS

Let us consider a one 'limensional second order equation

9)2 02/-•f -b( x)!-•. f=: (10)

f(x, to) = fo(x), f(x=O)= f(x=a) =0 l

where b(x) > 0 is a time independent continuous function of x. Instead of
using the finite difference representation of -' let us combine the explicit
.algorithm with the method of moments. To this end we will use the finite
differences for the apl)roximation of time derivatives, expand the function
f(x) into series of sines

f(x) c, sin(ilrx/a) (12)

and use the inner product

< uv >= j uv dx (13)

to find the expansion coefficient at any instance of time. (A detailed deriva-
tion of the time domain method of moments for Maxwell's equations can be
found in [11)

It can easily be verified that operator

92
L = b~x)Ox2(14)

is positive and self adjoint. This case was considered previously so we may
conclude that the algorithm is stable if

At < (15)

At this point it is necessary to estimate the norm of L. The problem is
defined in the Hilbert space spanned over sine functions. The norm of L in
such a space can be estimated as follows

tiLil _< IILMII = < LMX bx .b,(
IlXl a1 (16)



where b,,,,, is the maxinmal value of b(x) over the interval 0 < x < a.

We may conclude that the explicit algorithm combined with the method of
moment with sine series will be stable if the time step is chosen such that

a

At < a (17)

Note that maximal time step is inversely proportional to iumber of basis
functions.

Obviously, the same procedure can be applied to other types of expansion
functions, including for instance finite elements. It is important to note
"however that the time step in the explicit algorithm depends not only on the
operator (equation) solved but also on the way the approximation of space
is constructed.

CONCLUSIONS

The application of the functional analysis to the investigation of the stability
of time domain algorithns has been presented. The method can easily be
applied to the investigation of the properties of novel time domain schemes
for Maxwell's equations such as the ones proposed in [11.
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ABSTRACT
We first outline the MAXEMOL scheme for the determination of the magnetic field. We then dedace
the electric field and show some results of our calculations. We next derive the stability criteria which
the scheme must satisfy and discuss their implications. Finally, the criteria are applied to a practical
problem in the heating of foodlike materials in a microwave oven, and some typical power density
distributions are shown.

INTRODUCTION
The Method of Lines (MOL) is a variant of the time domain finite difference scheme which is often
employed to treat partial differential equations (PDEs). Normally, all the partial derivatives are
replaced by their finite difference approximations, giving rise to a set of algebraic equations the
solution of which requires the inversion of a large matrix. With the MOL, the derivatives along one
chosen axis (spatial x,y~z or temporal t) are left untouched, resulting thereby in a system of ordinary
differential equations (ODEs) w-hich can be solved numerically by a standard procedure, or by a mome
sophisticated software package.

The MOL is a well-established technique for the solution of heat conduction problems of the parabolic
typefl]. In the study of electromagnetism, its applications to elliptic steady state or time harmonic
equations have been made[2]. It has been used to tackle transient problems of the hyperbolic type, e.g.
absorption of microwave power by a dielectric material inside a multimode cavity applicator [3]. Her,
we outline an MOL scheme for Maxwell's Equations in three spatial dimensions, and verify its validity
by comparing our results with recently published work. We then derive and discuss the stability
criteria which the scheme must satisfy.

NUMERICAL SCHEME
Our ultimate aim is to estimate, from a knowledge of the electromagnetic field intensities, the
temperawtre distribution of a dielectric load inside a multimode applicator. Starting from Maxwell's
Equations, we eliminate the electric field E to arrive at a hyperbolic PDE for the magnetic field H in
non-dimensional form:

e' IH/ a t2 = V 2 H - * aH/it (1)

Here, e' is the real relative permittivity and a* an effective conductivity of the load, inclusive of the
effective loss factor e "e. We then rewrite Equation (1) as a pair of first order equations:

3G/Dt = (V 2 H - G*G )/e', aH/t = G (2)

and apply discretization of the spatial derivatives in a three-dinmensional mesh to obtain a system of
first order ODEs:

dGLA~/dt = gijk ( [G], [ HI, t), dHjj.lk/d t = hij1,k ( [G], [ H, t) (3)

where Iijk and hijk denote the right hand sides of Equations (2) evaluated at grid point r(ijk) at
time t, whereas (GI and [ H) represent function values located in a small neighbourhood of the grid
point.

Having determined H, we deduce E by integrating Amperes Law as a first order ODE:

t

E(r,t) = P(t)(E(r, 0)+f f K/[V'P(t)] I curlH dt (4)
0

t

whereKisaconstant, and P(t)=exp[- (a*/e') dt].
0
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NUMERICAL RESULTS
The numerical scheme is implemented on a Sunsparc workstation as MAXEMOL (MAXwell's
Equations by the Method Of Lines) and is used first to model the propagation of microwaves through a
dielectric-filled waveguide, for which an analytical solution is available. Our solutions are found to
tend to a steady state in less than ten periods of the input microwaves. The magnetic field profile
along the z-axis, the direction of propagation, is shown in Figure 1 together with the analytical result.
The agreement is very good, even for a fairly coarse mesh of 9x9x9 internal grid points. The
temporal variations of the electric field at the centre of the dielectric material are compared in Figure 2.
It can be clearly seen that, as the mesh becomes finer and finer, the numerical results converge
towards the analytical solution.

We have calculated the power density distributions within a two-layered dielectri, (water inside a
polystyrene container) placed near the centre of a cavity, an example of which is shown in Figure 3.
There are good qualitative agreements with recent experimental data obtained by Jia[41. We have
also produced results for a slab of woodlike material placed near the top of a cavity (Figure 4), and
found satisfactory comparisons with those obtained numerically by Jia and Jolly[5J.

STABILITY CRITERIA
If the exact solution is denoted by H, then the numerical solution can be written as H + • , where
is the numerical error given by the same wave equation as (I):

e'a 2 / l/t 2 = 72 " - (I *a t (5)

To show stability we let C be one of the components of t at grid point (ij~k). Then, using the MOL
as before, with central differences, we have

e' a 2 / at 2 + oa*'*)/t + [2/(SL) 21] = R (6)

where

(1/SL) 2 = (1/1x) 2 + (1/Sy) 2 + (1/Sz) 2

Sx, By, Bz being the local spatial step lengths in the x, y, z directions respectively; whereas R denotes
the set of function values evaluated in a small neighbourhood surrounding but not including the grid
point.

Let us consider a simple central difference ODE solver so that Equation (6) takes the form:

ýk+l - 2 ýk+ ýk-1+ a('k+l- ýk-)+b~k = R(St) 2  (7)

where C k = value of C at the k'th time step, a = a*t/( 2e'), and b = 2 (8t/6L)2/e'. For stability we
only need to investigate the homogeneous part of Equation (7), i.e.

(l+a) k+1 + (b- 2 ) k+ (I-a) k-1 = 0 (8)

Its solution can be written as C k = A exp(lk), where A is a finite constant, and u = exp(j), which
may be complex, is given by:

I • • '"•-, • .. .. • ' "• -' . . . . II U U Illlnnlllll kttnlltdu tmlI~l l i lal~~tm 1•i lln Il un lln mmmmm nll WMU=e lbll



(I+a)u 2 + (b-2) u+ (I-a) = 0 (9)

There is stability if 1l u II, the modulus of u. is such that II u II5 1. so that ( -inite constant
as k - -, or t -.--

Now let A - (2 - b)2 - 4(1 - a2 ), the discriminant of the quadratic. If L > 0, then

(2e-')/2 SL < St. (10)

where 5t. is the time step length. This contradicts the Courant condition for stability [6]. that is,

5t 5(e')01 2 SL (11)

Hence we must have A -.9 0, i.e.

(SL)4 - (8 e-/a* 2) (SL)2 + 4(St) 2/0* 2 < 0 (12)

For real values of SL we require that

0 < St < 2e'/ a* (13)

which is the same as 0 < a 5 1. Use of A ,5 0 in the solution to Equation (9) then gives II u II < 1, as
required.

Using the MOL. it is always possible to satisfy Inequality (13) with a very wide margin, so that

St << 2e'/a* (14)

The solution to Inequality (12) can then be expressed as:

St/(2e')l/2 < 8L, < (8e')12/a* (15)

Incorporating the Courant Condition (11), which is a universal requirement for the treatment of wave
propagation problems by numerical means, Inequality (15) becomes

St/(e')1 /2 • SL < (8e')lt2/a* (16)

The stability criteria for our MAXEMOL scheme can now be stated below:

St << mjin(2e'/L *) (17a)

max[5t/(e')l/21 < 5L < min[(8e')l/ 2 /(Y*J (17b)

where we have allowed for the temporal variations of the physical parameters e' and a*.

In the traditional method, SL has to be quite small, typically a small fraction of the microwave
wavelength A in the material concerned, which means that 5t must be even smaller, in order to satisfy
the Courant Condition (11). In the MAXEMOL scheme, however, we have a much freer choice of
5t, from Condition (17a). As a result, 8L need not be small compared to A in order to satisfy
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Condition (17b). This represents a considerable advantage over the traditional method, especially for
V) large microwave applicator systems.

Numerical Example
We have used the MAXEMOL program to predict three-dimensional power density distributions inside
a joint of beef heated by microwaves (Figure 5). Some typical results are shown in Figures 6 -8. To
verify the stability of our results, we refer to Figure 5. and give the numerical data below:

Oven dimensions: a=4400nm, b=380mm, d=350mm;
Relative permittivity of raw beef = e' - j e"., where e'= 48.0, e"e = 15.0;
Relative permittivity of polystyrene = 3.0 -j 0.0;
Input microwaves = TE1 0 at f= 2450 MHz;
Tune scale = 10/f =4.082 ns;
Length scale = 1224 mm;
o0 = 942.5 (non-dimensional).

With 400 time steps, 5t = 0.0025 (10.2 ps). much smaller than the critical value of 2e'/o*
(Equation (17a)), which is - 0.1019 (416 ps).

For BL, the lower limit is 5t/(e')1 2 - 3 .6 1xlO4 (0.4mm), and the upper limit is (8e')1I/10" 0.0208
(25.4mm). With 13 x 13 x 29 internal grid points, we have Bx = 0.0234 (28.6mm), 5y = 0.0222
(27.2mm) and 6z = 0.0095 (11.6mm), so that 5L = 0.0082 (10.0mm), which is quite large, about 56%
of the dielectric wavelength X (17.7mm), yet small enough to satisfy Condition (17b) with a good
margin. We have therefore verified the stability of MAXEMOL in this particular example.

CONCLUDING REMARKS
The Method of Lnes has been shown to be a versatile technique which is applicable not only to partial
differential equations of the parabolic and elliptic types, as claimed by earlier workers, but also to
problems of the hyperbolic type, to which belongs the absorption, reflection or transmission of
microwave energy within a cavity. Our numerical results, obtained for a dielectric-filled waveguide,
have been found to be in excellent quantitative agreement with the analytical solution. For the case of
a microwave cavity, there are good qualitative agreements with recent experimental and numerical
results.

We have derived and discussed the stability criteria which the MAXEMOL scheme must satisfy, and
illustrated their use in a practical example, namely the heating of a joint of beef inside a microwave
oven.

The convergence criteria for MAXEMOL have also been derived and will be the subject of a future
paper.

REFERENCES
[1]. Lawson, J. and Berzins, M. (1992), in 'Computational Ordinary Differential Equations' (Eds. J.R.
Cash and I. Gladwell). Clarendon Press, Oxford UK, 309-322.

[2]. Pregla, R. and Kremer, D. (1992), IEEE Microwave and Guided Wave Letters, 2, 6, 239-241.

[3]. Fu, W.B. and Metaxas, A.C. (1993), International Conference on Microwave and High
Frequency, 28-30 September, Goteborg, Sweden.

[4]. Jia, X. (1993), Journal of Microwave Power and Electromagnetic Energy, 28, 1,25-31.

[5]. Jia, X. and Jolly, P. (1992), Journal of Microwave and Electromagnetic Energy, 27, 1, 11-22.

[6]. Cangellark, A.C. (1993), IEEE Microwave and Guided Wave Letters, 3, 1,3-5.



I U-

0 - 09

A 1.A

ot

3r

0 0og

so~

js~wlft ~punu tpIW .P~ r.1 
-

9:62

IL



15m

Sraw beef
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Fig. S. Microwave Oven ( 400ram x 380mm x 350mm ) inhomogeneously loaded
with a joint of beef inside a polystyrene container with thick base and sides of
negligible thickness. Power enter% through a standard waveguide ( 86mm x 43rm)
centrally located at the top of the oven.

Fig 6. Calculated power density distribution on a horizontal layer of bee near the top
of the oven; relative permittivity of beef - 48.0 - j 15.0; relative permitivity of
polystyrene = 3.0, input frequency - 2450 MHz; time step - 10.2 ps and total
number ofgridpoints13 x 13 x 29.



Fig. 7. Calculated power density distrbution on a horizontal layer of beef near the

bottom of the oven; relative permittivity of beef = 48.0 - j 15.0;, relatv pertttivity

of polystyrene - 3.0,; input frequency - 2450 MHL; time step = 10.2 ps and total

number of grid points = 13 x 13 x 29.

Fig. S. Calculated power density distibution on a verical layer of beef in the middle

of the oven; relative permittivity of beef = 48.0 - j 15.0; relative pertnittivity of

polystyrene = 3.0, input frequency = 2450 Miz; time step = 10.2 ps and total

number of grid poins = 3 x1 13 29.
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SUMMARY

S-parameter computations in the time domain using the Finite Integration Technique (FIT) often
require the simulation of infinitely long waveguides connected to the port planes. The approximation
of open waveguide boundaries usually is accurate only for one particular frequency. Thus, multiple
.computation runs have to be performed to obtain the whole frequency dependency of the S-parameters
within the specified frequency range.

In this paper we present a broadband waveguide boundary operator which leads to very low reflection
factors within large frequency ranges. Using this operator the whole frequency dependency of the S-
parameters can be obtained from only one calculation.

The basic idea is to separate the transversal field at the waveguide port into a superposition of waveg-
uide modes. For each of these modes the infinitely long waveguide is represented by a lossy transmission
line model. The parameters of the transmission line are determined in regard to obtain very low reflection
factors down to <-110dB (for single precision calculations). The maximum stable timestep is not affected
by the boundary field computation.

After giving a short introduction to the method we will present some examples which demonstrate
the excellent accuracy as well as a large gain in calculation speed using this operator.

1. INTRODUCTION

The computation of S-parameters for microwave structures is of increasing impor-
tance for many technical applications. The computation of these parameters requires
a termination of waveguide ports with minimized reflection. This can be obtained by
"open" waveguide boundary operators simulating infinitely long waveguides connected to
the port planes.

For homogeneously filled and lossfree waveguides these boundary operators can be im-
plemented "broadband" which means that the open boundary condition is satisfied within
large frequency ranges. Using broadband operators the whole frequency dependency of
the S-parameters can be obtained from only one computation.

In this paper we present a new broadband boundary operator and its application to
three problems. A comparison with a monochromatic operator which has been proven to
be very accurate for many examples demonstrates the high precision of the new method
and the large gain in computation speed.

The first example is a simple rectangular waveguide. The S-parameters of this struc-
ture are well-known which recommends this example for demonstrating the accuracy of
the operator.

The next two examples show more practical structures. The first one is a 3dB power
splitter which has been designed in regard to minimize input reflection for a high power
application (P = 150MW). The results of a broadband calculation are compared with
results of monochromatic computations at several frequency points.

The last example shows a filter consisting of a rectangular waveguide with metallic
inserts. The results of a broadband computation are compared with measurements and
results of a mode matching method.

'Work supported by GSI Darmstadt



2. THE METHOD

The Finite Integration Technique (FIT) ([1,2]) applied to two dimensional homoge-
neously filled and lossless waveguides yields an eigenvalue problerm for the computation of
transversal waveguide mode fields ([3]). The eigenvectors and thus the transversal elec-
tric mode fields are not frequency dependent within the restrictions mentioned above. If
we assume the propagation constant /3 for the modes to be zero and consider that the
eigenvalue problem can be transformed into a symmetric one ([4,5]) we can write:

-X=)2 X MT=
M'x=w~ x , M=M (1)

with M being a real symmetric matrix depending on the discretization of the structure.
The eigenvalues wc,i/2r are the cutoff frequencies corresponding to eigenvectors x, which
are normalized to be orthonormal. The transversal electric mode fields can be derived
from these orthonormal eigenvectors xi using a nonsingular real transformation matrix T:

e= , eE R (2)

We introduce a bilinear functional related to the transformation matrix T which rep-
resents an orthogonality relation for the modes:

< e,,e > = eT. (T {TT) 0 (3)

We assume e(w) to be the Fouriertransform of the transversal electric field in an
arbitary cross-section of the waveguide. This field can be written as a superposition of
the transversal waveguidemode fields e,:

!(w) = E (W)ik , a(w) E C (4)
k

Transforming this equation into time domain and considering that the ej do not depend
on frequency we obtain:

e(t) = y ak(t)jk (5)
k

The mode coefficients ak in eq. (5) can be computed at an arbitary time to using the
orthogonality relation (3):

< e(to), j >T = Z ak(to) < ek, ej >T = a3 (to) (6)
k

Using eq. (3) the transversal electric waveguide field can be separated into several
waveguidemodes. For each of these modes the transversal electric field and the cutoff
frequency are given by the solution of the eigenvalue problem.

In the following we consider the waveguide termination shown in Fig. 1. The coefficient
a, of the regarded mode in plane 1 can be obtained from the transversal electric fields at
this plane using eq. (6). The common leap-frog time integration scheme ([6]) needs the
transversal electric field at the boundary plane 2 to compute the magnetic fields inside the
computation domain. Now we will show how to obtain the electric field at the boundary
plane 2 from the field at plane 1.
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Figure 1: This picture shows the waveguide ending at the

boundary plane 2. Plane I is the meshplane next to the
! boundary. a, and a 2 are the coefficients of the regarded

Ol -• 2 mode at the planes I and 2, respectively. Each of these
: coefficients ai can be split up into two parts propagating
L a !along ±z-direction named Ii and 0, respectively.

al a2

The mode coefficients can be separated into two parts according to waves propagat-
ing along ±z direction. The coefficients corresponding to ai are named as Ii and Oi,
respectively. Related to Fig. 1 we write the following set of equations:

I= -, Oe - e-•k0(w)AzOj (7)

a, = I, + 01 a2 =1 2 + 0 2  (8)

Solving these equations yields the mode coefficient a2 and thus the transversal electric
field at the boundary plane from the mode coefficient a, and the incident mode amplitude
12. Setting 12 # 0 results in a stimulation of the fields by a waveguide mode. This kind
of excitation is required for the computation of S-parameters.

The discrete dispersion relation which correlates the propagation constant k. and the
frequency w/27r can be written as:

/sin(wAt12)\ 2 = (si(At/2) )2 + ifl(k2Az/2), 2(9
cAt/2 cAt/2 Az/2 (9)

In the following we will derive a one dimensional discrete transmission line model for
the waveguide. First we consider an infinitely long transmission line as shown in Fig.
2. The differential equations describing the concentrated elements of the model can be
discretized by replacing the time derivations by a central discrete differential operator:

At lptl-ý = I1.i,+7jAt (Uin+1/2 _ ,l+12 int1l = n, + (10)+1/

Uin+I/2 = Un-1/2 +I At ,i( •

- .At, (11)

Assuming k_ to be the propagation constant along the transmission line we can write:

r"+/ . e _ = Ip/ • e-jk.Az (12)

The discrete dispersion relation for the model can be derived from eq. (10),(11) and
(12) using the Z-transform:

cos(kAz) = 1 + CL(+ ( ,)) (13)

The parameters LI, L2 and C can be choosen in order to fit the two dispersion relations
(9) and (13). For this case the transmission line model is an exact one dimensional
representation of the three dimensional waveguide.

I ... .... .i.. .. | i i H |iD l ia nIa i il•' ' '
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Figure 2: This picture shows the three dimensional waveguide and its one dimen-
sional representation by a transmission line model. For both in fact infinitely long
structures only a part of length Az is considered.

The initial problem has been reduced to simulate an open boundary for the transmis-
sion line with minimized reflection. Now we consider the structure shown in Fig. 3.

transmissionline transmissionline

Figure 3: This picture shows the structure of the open waveguide boundary operator. The
lossless transmission line is an exact one dimensional representation of the three dimensional
waveguide. The lossy part of the model is needed for the termination of the lossless transmis-
sionline with minimized reflection.

The waveguide part of length Az is represented by the lossless part of the transmission
line. The lossy part of the model is needed to obtain a low reflecting termination of the
one dimensional waveguide representation. Two effects essentially contribute to the total
reflection at the input of the structure:

"* The reflection at the electric termination: This part can be reduced by increasing
length and damping constant of the transmision line.

"* Reflections at the transition of transmission line cells with different parameters:
These reflections can be kept small by varying the parameters smoothly along the
transmission line.

The damping can be introduced to the transmission line equations (10) and (11) by a
factor K1 :

n At, 12_T712 It At2 n1/I"+' K I i -+ = K, I3ni + 'tU,' (14)
l'" 1, iC Wil +, L2 C (4

UU,+/2 + 1 2,i (15)

In these equations the voltage is normalized by C/At. The complex dispersion equa-
tion derived from eq. (14) and eq. (15) yields an approximation for the distribution of
the propagation constant k, = j/ -ja along the transmission line:

( Az )2 2Aisin 2 (wAt/2) + Bisin(wAt) (16)Oi+l = O/, + (Ki+l Kj) y-• ?+B
( 2cAt A 2(6

ai+l = ai + (Ki+1 -K) Az 2 2Bjsin2 (wAt/2) - Aisin(wAt) (17)(2cAt) A2 + B?



9 A, and Bi are expressions depending on a,, Oi and Az. Using eq. (16) and (17) the
correlation between the reflection factor r, (at the transition from the i-th to the (i + 1)-th
cell) and the distribution of the damping constant K, can be written as:

=(z - K,)f,(1/Q, - Q()IK,+, = K + IrIf[( 1 - Q) + f 2 + (z - K1 )fQ(jCi+D,)J (18)

The parameters fl, f2 and z are constants depending on frequency, timestep, cut-
off-frequency and discretization. C,, Di and Qj additionally depend on the propagation
constant according to the i-th transmission line cell.

The transmission line parameters can be computed from eq. (16), (17) and (18) in
order keep the total input reflection below a specified limit. The length of the transmis-
sion line and thus the cpu-time and memory space required for the boundary simulation
depends on the frequency range to be simulated as well as on the cutoff-frequency of the
mode and the reflection factor limit.

A remarkable feature of this boundary operator is that the maximum stable timestep
for the field computation is not affected by the open waveguide simulation.

3. EXAMPLES

Our first example is a simple rectangular waveguide as shown in Fig. 4. With this
example we can test the accuracy of the boundary operator because the S-parameters of
this structure are well-known. 1.0

Port 2 Incident mode

0.0

-0.5

Port 1 -1.00.:0 ~ 0:5 1: 1:52 • 2 .52J 3.0 3.5
TIME I NS

Figure 4: The geometry-plot shows the rectangular waveguide. The cross-section dimensions are
72.14mm x 34.04mm which results in a cutoff-frequency of 2.079 Ghz. The right plot shows the
time function of the incident mode amplitude at port i (mean frequency 4.5 Ghz, bandwidth
5 Ghz).

The structure has been modeled using about 5000 mesh cells. Two computations have
been performed with different upper limits for the reflection factor. In both cases the
computation has been terminated when the output pulse at port 2 decreased to 4. 10- of
its maximum amount. The computation time was about 47 cpu-seconds' for low reflection
(10-6) and about 41 cpu-seconds for medium reflection (10-").

Fig. 5 shows the results for low accuracy corresponding to an estimated reflection
factor limit of 10-i. The length of the transmission line was 523 cells for this case.

Fig. 6 shows the results for improved accuracy (reflection factor limit set to 10-6). For
this case the length of the transmission line was 3405 cells. The small difference between
the two cpu-time requirements measures the additional numerical effort for the boundary
operator.

1all cpu-times in this paper refer to a SUN SPARC SERVER 690 MP
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Figure 5: This picture shows the reflection at port 1 for an estimated reflection factor limit of
10-4. The left plot shows the time signal of the reflected mode amplitude and the right plot
shows the reflection factor versus frequency in dB.
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Figure 6: This picture shows the reflection at port I for an estimated reflection factor limit of
10-6. The left plot shows the time signal of the reflected pulse and the right plot shows the
reflection factor versus frequency in dB.

Both computations demonstrate that the actual reflection coefficient is of the same
dimension as the specified limit. The computation with high accuracy shows that the
reflected pulse can be limited down to the dimension of numerical noise.

The second example is a 3dB power splitter as shown in Fig. 7 which has been designed
in regard to minimize the input reflection factor and to avoid large field strength values.

The structure has been modeled with about 20.000 mesh cells. Due to symmetries only
one half of the structure has to be considered. The S-parameters have been computed
using the broadband boundary operator and additionally at several frequencies using a
monochromatic operator which has previously been proven to be very accurate ([6]). The
cpu-time of about 1900 seconds needed for the broadband computation is equal to the
time needed for one monochromatic computation. All calculations have been terminated
when the pulses were decreased to 5. 10- of their highest amount.

Fig. 8 shows the excellent agreement between broadband and monochromatic com-
putations within the accuracy limit of -48dB given by the chosen termination error of
5. 10-1. This example demonstrates also a large gain in computation speed using the

broadband operator.



- Output
Symmetry .. ~

plane

Figure 7: This picture shows the geometry of
the 3dB power splitter modeled with about

inputI 20.000 mesh cells. Due to symmetries only
one half of the structure has to be considered.

Reflection factor 0.002 Transmission coefficient dB
-30.

- 0.0021

-r. 004

-40. -0.006

-45. /
-0.•000- ,

-50.
-55. -0- 014

2.8 2.9 3.0 31 3 .2 2.8 2. 9 3.0 3.1 3.2
FREQUENCY I GHZ FREQUENCY / GHZ

Figure 8: The left plot shows the input reflection coefficient versus frequency in dB. The right
plot shows the frequency dependency of the transmission coefficient in dB. The solid lines are
results of a broadband computation (173 samples within this frequency range). The marked
points in both plots are results of monochromatic computations. The accuracy limit given by
the termination error is -48dB for all computations.

The last example is a waveguide filter shown in Fig. 9. For the discretization about
100.000 mesh cells have been used. The computation time for the broadband calculation
was about 45 cpu-minutes. Due to symmetries only one half of the structure has to be
considered.

Symmetry-
plane ,-- ., IOutput

Figure 9. This picture shows the geometry
of the waveguide filter modeled with about
100.000 mesh cell.;. Due to symmetries only
one half of the structure has to be considered.

Fig. 10 compares the results for reflection factor and transmission coefficient ,,,.
measurements and results of a mode matching computation. The agreement between all
three results for the reflection factor is good within the interesting range above -20dB.
The agreement between the results for the transmission factor obtained by tne different
methods is excellent. In all cases it is remarkable that the results of the broadband
computation are closer to the measurement than the results of the mode matching method.
The accuracy of the computations may be further improved by considering losses at the
conducting material surfaces.
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Figure 10: The left plot shows the input reflection coefficient versus frequency in dB. The right
plot shows the frequency dependency of the transmission coefficient in dB. The solid lines are
results of a broadband computation, the dotted lines are results of a mode matching method and
the stars in both plots mark results of measurements (courtesy of Dr. Steffen Haffa, Hirschmann
GmbH.).

4. CONCLUSION

In this paper we presented a new broadband operator for open waveguide boundaries
which often are required e.g. for S-parameter computations.

The algorithm also allows the field-excitation by incident waveguide modes. The
maximum stable timestep is not affected by the b )undary simulation.

The essential advantage of the broadband operator in comparison to monochromatic
operators is the enormous gain in computation speed.

For three examples the agreement witb :esults obtained from computations using
a monochromatic operator or a mode matching method as well as the agreement with
measurements has been demonstrated.
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1. INTRODUCTION.
In the optics approximation, it is well known that the backscattered echo can be associated
with a firite number of discrete sources. This leads to echo signals formed by a sum of
independent elementary components [1]. The commonly used method to approximate this
inverse scattering problem is to extract the scattering centers by a peak peaking procedure
from an estimated time-domain profil. This is usually performed by an Inverse Discrete
Fourier Transform operation on frequency-domain scattering measurements.

With recent developments in systems and materials design, the control of echo
characteristics of targets that may fall in the beam of the radar becomes vitally important in
a tactical point of view both in military and civilian applications. Electronic warfare and
electronic countmeasures motivate the reduction and the control of military target's echo.
Techniques like target masking, chaff (diversion system by clouds of metal particles),
jamming (deliberate emission of signals) and echo reduction have been so developed.
Cancelation methods (loading objects with specified elementary RCS) including passive and
active cancelation are also used to reduce the target echo in spite of the difficulties in
controlling self-oscillations, phase and amplitude of added antenna like elements.

On the other hand, it is well known from geometrical consideration that the physical
scattering process have a specific dependency on the wavenumber (k=21r/X) therefore on
the frequency (X=c/f). Moreover, based on loading discrete antennalike elements (dipoles,
slots,..), on chaff or on jamming; electronic countermeasures may change all backscattered
features including magnitudes, spatial frequencies, introduced phases and even the number
of detected components. This make the target's echo frequency-dependent. Adaptive
parametric methods are therefore more appropriate to the scatterings' center extraction
problem. These techniques learn the required input (measurements) statistics and converge
in a steady mode with permanent adjustment.

This paper investigates the identification and tracking of the scattering centers models
associated with the frequency response of a frequency-dependent backscattered echo. The
use of discrete scattering model is justified in section 2. To this purpose, we use a
constrained adaptive Infinite Impulse Response (IIR) filter consisting of a cascade of notch
sections to track the scatterers' range projected on the direction of propagation (Fig .1).
Definition and properties of this structure are presented in section 3. This choice is
explained on the basis of a time-domain and frequency-domain structures analysis. The
combined detection-estimation operation is accomplished by the joint application of a
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cascade of IIR notch filters and a recursive least square estimation (section 5). The
elementary outputs' powers are used to determine the number of signal components.

2. PROBLEM STATEMENT:
Due to the lack of an exact RCS formulation of practical target, it is well known that under
the high-frequency hypothesis (i.e. when the incident wavelength is significantly shorter
than any characteristic target dimension), optics methods give very good approximations
when the objects are as small as about two wavelengths. The target scattering is then often
modelled as an array of n points-like scatterers and can be considered as a set of
independent discrete scatteriag centers characterized by their RCS (ci) and by the
introduced phases (0i). The backscattered field appears to emanate from a finite number of
discrete sources residing at these scattering centers and occuring principally at geometrical
discontinuities of a body [2].

Target

.11 Antenna

Figure 1 :Monostatic, Fixed Polarisation System

With a monostatic polarized receiving antenna (fig. 1), the backscattered field is
decomposed into n elementary components each with a different phase and magnitude. The
physics of the scattering process determines the relative magnitudes of each contribution,
while the phase is dependent on the distance from the scattering center to the observation
point.

H(f) = Aieisf)
i~I

The received field H(f), can then be measured continuously over a frequency band as a sum
of p complex sinusoids with additive noise v(f):

Ai exp(j(2nfif + .i) + v(f)

For the targets' features tracking problem we assume Ai, Oi, wi, and n change slowly with
respect to frequency f and hence the received signal should be denoted by a frequency-
dependent model characterising the backscattered echo:

2
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m(I)

SA,(f)exp(j(2nf•(f)f + O,(f)) + v(f)
i=I

The necessary format for digital-signal analysis is provided by a frequency sampling of the
specified emission band (B) centred on fo. This produces N equally spaced frequencies:

f=f+(k- N+I)Af

f-B< B+f -
where 2 2 and 0<k<N-I

The discrete backscattered measurements will be used in identification and tracking of the
scattering centers' features i.e. the amplitudes Ai(k), the spatial frequencies fi(k) and the
initial phases Oi(k). The detection of the number of scattering centers n(k) is also
investigated.

The signal format followed in this presentation is then:
n(k)

y(k) = • A(k)exp(jwo,(k)k + O,(k)) + v(k)
i=I

k =0,1 ..... N-I
As it had been shown [3,6], the estimation of the parameters of complex sinusoids is
impractical to implement even in a stationary environment. The function to be minimized is
highly nonlinear with respect to the unknown frequencies and require a search over a p-
dimensional space. Iterative optimisation can be used, but convergence to global minimum
is not guaranteed. Simplified methods for optimizing the maximum likelihood function were
suggested by several numerical analysts and in the signal processing literature [4,5,6].
Recently, a number of IIR adaptive filters have been described that can be used for tracking
sinusoidal features [8,9, 111.

The independence of scattering centers, the study of maximum likelihood estimator and the
suitablility of ANF in processing narrow band signals convince us to use this last structure
in the inverse scattering problem [7].

3. NOTCH FILTER PARAMETRIZATION.
Many studies had shown that the N.F. appears to be the simplest natural way to eliminate
sinusoidal signals. In fact, it had been shown from frequency-domain and time-domain
analysis that this structure allows a perfect sinusoidal-in-noise representation [9]. As it is
easy to show, the real (or imaginary) part of the signal y(k) obeys a homogenous
difference equation of order n=2p. The coefficients of this equation form a monic
symmetric polynomial with unit modulus roots. The observed process (signal+noise) has a
structure of an ARMA(p,p) with a special symmetry in which the AR parameters are
identical to the parameters of the MA portion of the model [7]. The proposed fIR model
satisfy the miror symmetric form property so that the zeros of its transfer function lie on the
unit circle. The poles are constrained to be on the same radial line as the zeros and slightly
displaced towards the origin by the introduction of a debiasing parameter a. The closer Of is
to unity, the flatter the notch filter response will be, constraining the ARMA filter model to
have identical AR and MA portions and making the bias smaller. Zeros and poles are then
linked by a simple relation:

4 3
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z= rexp(jow,) and pj z = a rexp(j,)

fori=l,2,....2p 0!a51 and 0!5r!l

The general set of the sinusoidals' signals adapted IIR filters is of the form:

H(z + bz-1 . ...... +bz-P + ..... +btz-2P' + z-2p l+ aiz- + z-2
1 + a'bIz-. ...... +.Pbp Z-pa. ..... +a 2p-ibiz-2p-+ a 2pz-2P j=1 I + alaiz-1 + a 2aZ-2

y~k) 2pWy(.• )• ) Y (k)Y •_(k)

H(q H (q- H (q"

Figure 2: Cascaded Notch Filter Structure.

This last structure will present a great interest in the remaining of the investigation due to
its following properties [7,8,9,11]:
1. The idependency relationship of differents elements.
2. Minimal parametrisation (one frequency :- one parameter).
3. Computational efficiency and numerical robustness.
4. Stability and rapid convergence.

4. RECURSIVE FREQUENCY ESTIMATION ALGORITHM:
The independence between backscattering centers implies independence of frequencies
which lead to independence between the parameters in each elementary cell. Without loss of
generality, we assume identical bandwith (B=v(l-a)) for all the notchs. The jth cell's
ouput is then (Fig.2):

yj(k) = ljJH,(q-')y(k)

Where q-1 is the delay operator. The parameter adaptation algorithm can be applied to each
cell independently of the others. We suppose that the first (0-1) filters have converged. The
cascaded nature ensures that the signal components will be removed one by one in
successive cells. The Recursive Maximum Likelihood Algorithm for the cascaded A.N.F.
may then be summarized as the following:

For j =I top
gj(k) = j =Hj(q-')'j_,(k)

For k= to N,
aj(k) = ij_,(k) + Fj(k)'j(k - l)ej(k)

Fj(k- 1)
k +'1 T(k - l)Fj(k - l)'(k - 1)

j(k 1) =_dei(k) __yj(k)_ -_(k)j(k - 1)

dij(k) 1 + ij(k - 1)a(k)q-' + a(k)2 q-2

a(k) = a0a(k - 1) + (I - .0 a,(N))
X is a forgotten factor.

4
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0 0 SIMULATION RESULTS:

In the following, the notch frequencies were normalized with respect to the sampling
frequency. The input data were a sum of two sinusoids in white noise with a Signal to
Noise Ratio (SNR) of about 20 dB (Fig.3). A SNR is defined for the signal as the power of
the sinusoids over the total noise power [71. The input frequencies are 0.1 and 0.3
respectively for the 256 first samples after which the second frequency is step changed to
0.25. The frequencies of the notches are initialized to zero.

2 8 1 I. _

2t6 1 ~I Y.___

6te

Fiue3: Input data periodogram. Figure 4: Estimated frequencies tracking.

It can be seen by referring to fig. 4 that both notches converged to the nominal values and
we can observe the tracking ability of the adaptive algorithm. Moreover, it is interesting to
note that the second-order system had a similar convergence time (about 100 samples). This
adaptation period is a function of choice of the filter's parameters. Referring to figures 5
and 6, the two sinusoids are adequately notched:

Stet

* i A. : - " - I •

Zee . .. . .. ... .. .
Figure 5: Input d . _eriodogram . Figure 6: PErimat theqsne trdoutpuIthcne reemanng bytraefern the siusids' frequeothnocies obserged ton the noutput palesogamd
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ntetathe second-re sstep ind thi iiiarcnvestigatio itoetimat hcteer magnitude0s andphaes) byia

estiations er ais afndtiono of th is algorih can be found i

lite6,ture [10] Usingsid the followingy sinamothdel: tcnb enthtwt naeut
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Figure 5: Periodogramn at the first ouput. Figure 6: Periodogram at the second output

The remaining "trace" of the sinusoids' frequencies observed on the output periodograms
are due to the filters parameters and to the size of the imput data. Better notching can be
obtained with greater data size.

5. MAGNITUDES AND COMPONENTS' PHASE TRACKING:
The second step in this investigation is to estimate the scatterers magnitudes and phases by a
Recursive Least Square (RLS) algorithm. Its tracking capabilities ensure the quality of the
estimations. The analysis and performance evaluation of this algorithm can be found in the
literature [10). Using the following signal model, it can be seen that with an adequate
problem formulation given by the trigonometric equality:
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y(k) = A, sin(wik + 0j) + v(k) = A,(sin(wok)cos(Oi) + cos(ak)sin(O,)) + v(k)

we can obtain the standard adjustable predictor which can be time varying. In the

following, we drop the time index for simplicity. The signal can then be expressed as

y(k) = 0T(k)w(k) where w(k) = [cos(&,)sin() ..... cos(6)sin( )] T

A linear least square formulation can be obtained if we consider the new parameters:

0' = Aicos(d) 02 = Ai sin(0i) for i = 1,2 ..... 2p

Many algorithms [10] may then be applied to minimize the square prediction error:

minimumi(y(k)- 6 cos(olk) + 62 sin(wik)

The least square solution is so given by:

A 616 ......... 62p]= N k Ji} { kN0 1 12 2 N YW (k)W(k)T y•W(k)y(k)TJ= 1'1 " ...... 2P= k = Ik = I

where

""i o1+2 and *i=Arctg(O!/ 6?) for i =1,2 ..... 2p

SIMULATION RESULTS:
For a three sinusoids signal, we let the frequencies be 0.1, 0.2 and 0.3 respectively. All the

magnitudes are equal to one and the phases are initialized to 0.01, 0.02 and 0.03 for the

first 100 sample points after which they are respectively step changed one after one at every

50 sample points (i.e. at 100th sample for the first, at 150th sample for the second and at

200th sample for the third frequency). The new phase values are the old ones increased by

v (0.51,0.52 and 0.53) (Figure 7):
ice

SI . ?S II I e 2 9,ZS IA I is

Figure 7: Input data periodogram

This periodogram of the simulated signal shows a dedoubled peak at all the frequencies and

specially at the last two ones. This is attributed to the sinusoidal relationship of the

periodogram at the nominal frequencies due to the a phase step change of the phases [7]:

6
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Figures 8 to 13 shows respectively the phases and magnitudes tracking obtained by an
exponential forgotten RLS algorithm:

"I .. . . . : I
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Figure 10:Third phase estimation Figure I l:First magnitude estimation
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Figure 12:Second magnitude estimation Figure 13:Third magnitude estimation

The a- step phase changes was successfully tracked and the magnitudes was also adequately
estimated. Others simulation results have been made [7].J

6. DETECTION AND DISCREMINATION O SCATrR G CENTERS.

The number of active components can now be estimated by using a sufficiently long chain

of elementary N.F. cells and measuring the power of each output. When the normalized
power of any ouput is equal to about the power of the previous cell we conclude that the
number of contributors is equale to the previous cell's order. This can be summurised by
the following steps:

7
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"* Assume an over-evaluated order, say n, and estimate the different frequencies.
"* Filter the successive outputs through the resonant bandpass filters:

I - hi(q-') for 1:5 i -< n

"* Measure the normalized power ti / E where ti = yHay and E =yHy. (Y is the

input data vector), and compare them to conclud about the number of components.

The discrimination of the scatterers on active or passive is made on the basis of the
estimated features. If the magnitude, frequency or the introduced phase is frequency
varying, it corresponds to an active scatterer.

Example:
In the following we let the input data be a noisy sum of three sinusoids with unite
magnitude and normalized frequencies 0.1, 0.2 and 0.3. The RSB is about 20 dB. With 5

N.F. cells, the computed powers are indicated on the following figure [71:

The comparison of the output power of successive cells traducte the notching effect. The
stabilisation of the powers arround the noise power indicate that all the components have
been rejected and we can conclude about the components' number. This method was tested
under different signal-to-noise-ratios for well separated frequencies.

7. CONCLUSION: According to RCS signal analysis, the structure of the cascaded ANF
has been proposed and associated to a RLS algorithm for the estimation of target
backscattered echo features. It was shown that the structure can isolate and enhance
individual components in the presence of noise. It is possible to determine the spatial
frequencies of the received data directly without any root finding or transfer function
evaluation. The number of scattering centers can also be determined by the notching
property of the filters. Magnitudes and phases are obtained by adequate parametrisation by
a RLS algorithm. It is expected that the proposed procedure will be especially practical in
real RCS data and in real-time applications.
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Abstract - Sub-mm/THz monolithic circuit components made of a combination of layered
dielectric waveguide and strip-ridge line are characterized using the Finite Difference Time Domain
(FDTD) technique. The use of FDTD analysis allows for the characterization of these components
in a very wide frequency range. The first structure analyzed with this method was a transition from
"a strip-ridge line to a layered dielectric waveguide. The transition is found to be very efficient over
"a wide frequency band which makes it useful for a variety of applications. Moreover, preliminary
results for a sub-mm wave distributed directional coupler are presented. This coupler employs the
above transition and consists of a section of a coupled layered dielectric waveguide.

1 INTRODUCTION

Millimeter wave dielectric waveguides have been extensively studied during the past two decades.
Examples of these waveguides include dielectric image guides, strip dielectric guides, insulated
image guides, inverted strip dielectric guides, cladded image guides and trapped image guides.
These waveguides are constructed from combinations of layers and ridges of various permittivities
in order to provide a region wherein the propagating power is well-confined. The widths of these
lines approach one guided wavelength in order to maximize field confinement. Although there are
several examples of the monolithic use of these dielectric lines in the literature [1], they have been
generally considered hybrid in nature.

Recently, Engel and Katehi [2] suggested that development of monolithic sub-mm guiding struc-
tures be realized by considering variations of the early dielectric lines. The new waveguides are
made of materials which are available in monolithic technology so that they are compatible with
solid-state sources. The dimensions of these monolithic guides are fractions of a guided wavelength,
so the new structures may be used not only as guiding media but as means of making passive com-
ponents. Presently, limitations in the fabrication process and availability of III-V materials permit
use of these lines at the high frequency end of the sub-mm-wave spectrum.

The successful integration of dielectric waveguides and power sources into a sub-millimeter wave
or THz monolithic circuit relies on an effective transition. In particular, when layered ridged
dielectric waveguides [2] are used, a transition to the waveguide may be realized with a short length
of conductor on top of the ridge (Figs. 1-2) [3]. Of primary interest in evaluating a transition
is the power transferred from the dominant mode in the strip-ridge structure to the dominant

1i
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Figure 1: A transition between a power source and a layered ridged dielectric waveguide.
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Figure 2: Cross-section of the strip-ridge structure. The dielectric waveguide structure is the same except w=O.

mode in the dielectric waveguide. If only the guiding properties of either region are desired, then
two-dimensional analysis is sufficient and higher order modes are easily taken into account. If
the properties of a transition are desired, then three-dimensional analysis is necessary. Previous
work on the characterization of this transition was based on a hybrid full-wave integral equation-
mode matching (IEMM) analysis technique and some preliminary results were presented in [4]. In
addition, a detailed study of a shielded transition from a strip-ridge line to a dielectric waveguide
in both the frequency and time domains is presented in [3]. In that study, difficulties arised in
designing a shielding structure in which the dominant dielectric waveguide mode propagates and
the first higher order strip-ridge mode does not.

In this paper, the same transition is analyzed in open environment using the FDTD technique.
This is performed with the use of a combination of Absorbing Boundary Conditions (ABCs) around
the structure instead of a perfectly electric conductor. In addition, preliminary results for a distrib-
uted directional coupler, which employs such a transition, made of a section of a coupled layered
dielectric waveguide are presented.

2



* 2 THEORY

The FDTD method was first introduced by Yee [5] to solve electromagnetic scattering problems. In
this method, Maxwell's curl equations are expressed in discretized space and time domains and are
then used to simulate the propagation of an initial excitation in a "leapfrog" manner. Recently, the
method has been successfully applied to characterize microstrip lines and discontinuities [6, 7, 8].
The interested reader may consult these references for a detailed description of the method.

The FDTD technique has the ability to determine accurately the broadband characteristics of
sub-mm/THz monolithic circuit components by simulating the propagation of a Gaussian pulse
through the circuit. In this research, the vertical electric field component at z=O under the metal
strip is excited and the magnetic wall source condition of [8] is used to compute the fields elsewhere
in the plane z=O. The source distribution has been modified to take into account the discontinuity
experienced by the vertical electric field [9].

The first order Mur boundary condition [10] is used in the left, right and top walls in order
to simulate an open structure. On the other hand, the super-absorbing first-order Mur condition
[11, 12] is utilized in the front and back cavity walls in order to simulate infinite lines. This absorbing
boundary condition requires a choice for the incident velocity of the waves, or equivalently feff- It
has been found that an appropriate choice of Eef I minimizes the effect of the absorbing boundary
walls. For the transition shown in Figs. 1 and 2, the average between the dc relative effective
dielectric constant of the strip-ridge line and that at the higher frequency limit has been used at
the front wall. This can be obtained using either the 2D-FDTD [13] method or by simulating a
propagating pulse on a strip-ridge through line [6]. For the dielectric ridge guide, it is found (using
2D-FDTD) that the cutoff frequency of the dominant mode is approximately 350 GHz. Thus, 7,,eff

at the back wall is chosen to be equal to the average between the relative effective dielectric constant
of the dielectric guide at 350 GHz (i.e., 1) and that at the higher frequency end. The effectiveness
of these choices has been checked by performing several numerical experiments with different values
of f,,eff.

3 RESULTS

As a first example, Fig. 3 shows IS, I for a transition completely shielded inside a rectangular
waveguide of width 200 pm and height 250 pm in the frequency range 0-520 GHz [3] (see Figs. 1
and 2 for other dimensions). It is worth mentioning that the results agree with those obtained using
the IEMM technique [3). Figure 3 shows that the incident wave is totally reflected by the open end
for frequencies below approximately 475 GHz. This is due to the fact that the shielded dielectric
line cannot support any propagating mode in this frequency range [3].

Figures 4 and 5 show the dispersion curves of the dominant propagating modes of the strip-ridge
line and the dielectric guide (both un-shielded), respectively. As mentioned above, the dielectric
guide dominant mode has a cutoff frequency around 350 GHz (compared to 475 GHz for the shielded
one).

Figure 6 shows IS111 for the transition in open environment. Due to the open nature of the
transition, IS111 is not equal to one below the cutoff frequency of the dielectric guide (as was the
case of the shielded transition). Almost 20% of the incident power is lost as radiation for frequencies
between 100 and 300 GHz. The return loss is less than -10 dB for frequencies above 500 GHz. Thus,
the transition is an efficient one for frequencies from 500 to 570 GHz, where 570 GHz is the cutoff
frequency of the strip-ridge first higher order mode.
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Figure 3: Magnitude of S11 for a shielded transition. (w=40 pm).
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Figure 4: Dispersion diagram for the dominant mode of the strip-ridge line with w=20 pm. Other dimensions are as
shown in Fig. 2.
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Figure 5: Dispersion diagram for the dominant mode of the layered dielectric line. Other dimensions are as shown
in Fig. 2.
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Figure 6: Magnitude of SIt for the transition in open environment. (w=20 pm)

5



1 2

320 gm

4 3

Figure 7: Top view of a distributed coupler made of the layered dielectric waveguide.
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Figure 8: Scattering parameters of the coupler shown in Fig. 7.

Figure 7 shows a distributed directional coupler which employs the above studied transition and
consists of a section of a coupled layered dielectric guide of length L=870 um and separation SO= 160
,um. Assuming that the coupling due to the connecting guides is negligible, the length L is chosen
such that a 3 dB-coupler is obtained with a center frequency of 500 GHz [14]. Thie tapered sections
of the dielectric guide are modeled using the "staircase" approximation. The scattering parameters
of such a coupler and the radiation loss factor are shown in Figs. 8 and 9, respectively. The sources
of the discrepancy between the sirnulated results and the ideal response (i.e., both IS 121 and IS 131
should be equal to -3 dB at 500 GHz) are the effects of the junctions and the coupling between
the connecting guides (14, 151. 539. [n conclusion, the above results are not indicative of optimum
coupler performance due to the several junctions involved in the coupler. The optimization of the
coupler performance, including the transition between the strip-ridge line and the layered dielectric
g',iide, is a subject presently under study at the University of Michigan.
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Figure 9: Radiation loss factor of the coupler shown in Fig. 7.

4 CONCLUSIONS

A transition from a microstrip-ridge to a layered ridged dielectric waveguide has been characterized
using the FDTD technique. The variation of the S-parameters over frequency was shown, and the
transition was found to be very efficient over a wide frequency band. Preliminary results for a
distributed dielectric coupler have been presented too. As a future work, the transition and the
coupler will be optimized by varying the dimensions of the dielectric layers involved in the structure.
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FDTD Modelling of Wirebond Interconnects

E PillaL C. Bornkessel, W. Wiesbeck
University of Karlsruhe

Abstract

As the transmission rates for ultra wide band digital systems increases steadily due to world
telecommunication demand, the occurrence of discontinuities in electronic packaging must be
characterised. The wirebond interconnect is such a discontinuity and can cause signal degradation.
The Finite Difference Time Domain (FDTD) method is now a well established powerful analytical
tool, which is used here to provide insight into wirebond behaviour through the field distributions
and scattering [S] parameters computed for variation of the material parameters associated with it.
This can lead to recommending improved wirebond geometries. Comparison of FDTD results with
measurement shows extremely good agreement and hence verification. In addition important

considerations are provided with regard to discretisation schemes, which take into account the
number of overall discretisation cells, numerical errors and computation time.

Introduction

The transmisson of light wave signals moves steadily into the ever increasing GHz range, requiring
suitably designed multiplexor technology for rapid demodulation. As part of the development of this
hardware, attention must be placed on the occurrence of signal track discontinuitie', in multi-layer
printed circuit boards (PCB). Such discontinuities include via holes, coupling between lines,
crossovers, line bends and wirebonds. It is possible to solve Maxwelrs equations numerically for
such structures and observe their behaviour. This can lead to not only avoiding effects such as
dispersion, reflection, resonances, coupling and radiation, but also to the development of simpler
models for the discontinuities to be implemented in computer aided design CAD [1].

The FDTD [2] is now a well established numerical method for solving microwave circuit structures.
The versatility of the method lies in the number of physical features it incorporates. The FDTD
method implemented here includes the ability to define non equidistant cartesian cells and variation
from cell to cell of metal thickness, conductivity (a), and dielectric constant (Er), including,

additionally the presence of a Mur's first order absorbing boundary condition (ABC) [4]. For curved
structures the staircase approximation is used, where sufficient discretisation causes minimal
discrepancy. Here, the application of the FDTD to wirebonds is undertaken. A suitable discretisation
scheme is derived for the microstrip based wirebond structure, which minimises numerical error,
especially that which is caused by the homogeneously applied gaussian pulse below the microstrip
line, known as the DC offset error [3]. The discretisation scheme chosen has also an effect on the
computation time for the structure. In this respect it is mainly necessary to find a trade off between
the maximum frequency to which S parameter information is desired (i.e.: the pulse width in time)
and the corresponding discretisation step which can guarantee a stable computation. Once the
appropriate computational parameters for the FDTD are determined, the material parameters linked
to the wirebond are varied to investigate the wirebond behaviour. Structures are computed in the
FDTD in a cartesian grid to obtain S parameter, field distribution at a time instant and continuous
time field variation information. The S parameter results with respect to the length s (Fig.2) for two
different dielectric constants, variation of the dielectric constant and variation of microstrip line

.



width are provided. Comparison of results with measurement shows the extremely accurate
modelling offered by the FDTD. This provides a basis for the design and implementation of
wirebonds.

Microstrip based Wirebond Discretisation and Computation Time

Discretisation is an important factor in the use of numerical techniques. As the number of

discretisation steps is not limitless, there is a need to find optimum discretisation schemes when

dealing with the FDTD algorithm. Moreover, over discretisation in some cases leads to numerical

error. In the process of modelling these wirebond structures, observations made indicate that some
simple discretisation rules can be used in order to produce the best results. These rules apply in
general for microstrip based discontinuities.

JIM 1 00 Xwm

Fig. 1: Discretisation of the wirebond structure, including an expanded view of the wire geometry. Height and
width modelled with one discreuisation (Ax, Ay respectively), length with between 3 and 12 (ALz)

As seen in Fig. 1 the wirebond is approximated using three straight two dimensional sections. The
wirebond height and width is modelled with 1 discretisation step in the x and y directions

respectively. The horizontal section has between 3 and 12 discretisations depending on the length of

the wirebond.

Fig. 2: Dimensions associated with the wirebond structure. (s -- gap length, L = wire length, H = wire height,
w = line width, h - substrate thickness)

The application of the gaussian excitation pulse homogeneously under the microstrip line [3], is
known to produce a DC-offset error in the tangential magnetic field. The use of several discretisation

steps for the x-direction (Fig.l1) inside the substrate causes an increase of this error, as even more
Electric Field Ex components are homogeneously treated. This error is especially exaggerated when

the microstrip line width to substrate thickness w/h ratio drops below 1, as the homogeneity

condition is even less true for the field below the microstrip line. Hence for wirebond structures here

!-,1o .. .. '........ 1Ii... .. . i I ll I I9m. -



with a w/h ratio of 0.8. only 4 or 5 discretisation steps in the substrate are taken. This reduces the
number of overall discretisation steps as well as the DC offset error, which if not contained, produces
the familiar Gibb's phenomena ripple in the frequency domain when computing tie S parameters
using the fast fourier transform (FFT). In some cases, the pulse can be truncated at the final zero
crossing with negligible loss of information or a windowing function may be used.

The total number of discretisation steps in the three directions x, y, z produce a 20, 105, 90 mesh
respectively, amounting to 190000 cartesian cells. As the Mur's first order ABC is used [4], about a
20h (h=substrate thickness) distance is required in the y direction to avoid surface wave reflections.
With microstrip structures the number of discretisation steps in the x direction can be minimised to
around 20 steps as here the reflection is always minimal. In the z direction the reflection is
significant for high dielectric constant values, due to the use of a non dispersive ABC. With
approximately 90 steps this reflection from the end wall however can be separated from the
transmitted gaussian pulse, which is recorded under the second microstrip line 30Az away from the
end wall. One must make sure that the DC offset error of the output pulse is less than that of the
input so that the transmission coefficient is not greater than one for low frequencies (the input pulse
is recorded at 30Az from the excitation plane, where a quasi TEM mode exists). The FDTD is used
with a non-equidistant grid in order to increase the accuracy of modelling the wirebond dimensions.
The results show that the FDTD performs at best, when a non equidistant grid can be used to
discretise the structure in an exact manner dimensionally. Hence in the x direction Ax is varied
between 0.14 and 0.16 mm, similarly Ay between 0.03 and 0.13mm and Az between 0.125 and

0.13mm.

In accordance with the rules given in [31 these discretisations produce a At of 0.0544 picoseconds,

which provides information up to about 70 GHz for the gaussian pulse. For these structures therefore
with 4000 time steps, a CPU time of about 7 hours is attained on a HP9000/735 workstation. If an

-tension of this frequency range is required a smaller At can be chosen, this would require finer
discretisation in the z direction such that the narrower time pulse still occupies the mandatory 20
space steps. This results not only in a greater mesh, but a larger number of time steps, as the
oscillations from the shorter pulse need to decay. This can drastically increase the CPU time. Tests
conducted on a Fujitsu 2600, 5 Gflop vectorised machine demonstrated that no saving in time could
be achieved. This is due to the inherent suitability of the FDTD algorithm to parallel machines.

Capture of the Propagating Pulse

All pulses in this section are recorded for the Ex component of the electric field directly under the
microstrip line. The propagation of the gaussian pulse is recorded at four different time instants for
the case of Er = 10.8, w = 0.55, h = 0.635, ; = 0.1rmm, L = 0.35mm, H = 0.14mm shown in Fig. 3.
The dimensional symbols are referenced ac -)ding to Fig. 2.

In Fig. 3, at t = 866At the initial launched pulse with an initial reflection beginning at the wirebond is
shown. At t = 1066At the reflected initial part of the pulse begins to travel into the still approaching
pulse. At t = 1266At the reflected and transmitted pulse separate and travel in opposite directions. At
t = 1666At trailing pulses are seen due to multiple reflections at the wire and microstrip open ends.
An overlapping of pulses additionally occurs.
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Fig. 3: Propagating pulse shown at four time instants. (Ex component plane directly below the microstrip line)
For graphical purposes the end ABC is placed a few grid positions inside from the boundary.
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p For the case of Er = 10.8, w = 0.55, h = 0.635, s

- 0.1mm, L = 0.35mm, H = 0.14mm time
continuous signals for the total, input and output
signals are show n in Figures 4a,b,c respectively. .................................................................................................

The total signal, the centre Ex component under
the microstrip line, consists of the incident pulse > 0. . ............. ..........

being reflected at the wirebond taken at 30 Az w

from the excitation plane. The input signal in a
separate computation, is recorded at 30 Az from

the excitation plane for a length of microstrip
-0.5

line reaching the far ABC wall. The output 0 s0o 10oo 0s0o 2oo0 25o 3000 3500 4000

signal is recorded at 30 Az from the end wall. Tinm Step,

The reflected signal is obtained by subtracting Fig. 4c: The output signal from the wirebond recorded at
the 30 Az from the end wall. (The centre Ex component

the input from the total signal. These quantities under the microstrip line)
with fourier transformation provide the

necessary S parameters.

Measurements on Wirebonds
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Fig. 5a: Measurement (gated) of IS III for variation of s. Fig. 5b: Measurement (gated) of IS 121 for variation of s.

Several wirebond structures with variation of s shown in Fig. 2 for lengths of 0.5mm, 1mm, 2mm,
and 4mm connecting microstrip lines on a duroid 6010 substrate (Sr = 10.8, tan8 = 0.0024, w = 0.55,
h = 0.635, H = 0.14mm) are measured using Thru Reflect Line TRL [5] techniques. The
measurements in Fig. 5a,b shows the magnitude of reflection IS II and transmission IS 121

respectively. A rapid increase in reflection and decline in transmission is noticed as the wire length
increases. In fact the wirebond shows a band stop filter behaviour, where the stop band moves down
slowly in frequency as the wire length is increased. This indicates that in order to move the stop band
further up in the frequency range and allow a low pass behaviour, wire lengths below around 0.5mm
are required. Fig. 5c and 5d compare the FDTD with measurement for the 0.5mm and 2mm cases.
The shaded area shows the measurement range. Here extremely good agreement is seen. Again the
band stop pattern is seen for the 2mm case where the FDTD is able in addition to show the better
transmission properties of the wirebond above 50 GHz. The 2mm structure's IS121 shows some



discrepancy between measurement and transmission. This is due to the use of a two dimensional
approximation for the wirebond in the FDTD in contrast to the presence of a circumference for the
wire. The 0.5mm structure's IS121 on the other hand shows practically no discrepancy, as the error
clearly increases with the length of the wirebond. The above observations lead to focusing attention
on modelling structures with s values below 0.5mm in the analysis which follows.
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Fig. 5c: Comparison of FDTD and Measurement (TRL) Fig. 5d: Comparison of FDTD and Measurement (TRL)
IS I1 for variation of s. IS 121 for variation of s.

Variation of Wirebond Length s with Er = 10.8

Fig. 6a with w = 0.55, h = 0.635, L = 0.35ram, H = 0.1l4mm shows the magnitude of reflection IS111I

for s variation. Here it is seen that the reflection increases with the length s. The transmission IS 121 in
Fig. 6b similarly is seen to suffer with the increase of s. The gradient of the curves however is
inversely proportional to the length s and the shortest 0.1mm structure registers the lowest IS121
value. This effect is due to the dominating inductive behaviour of longer lengths of wirebond, which
presents a higher overall impedance to the pulse in the frequency range. Yet the results show that
both the reflection and transmission characteristics upto around 20 GHz make all three s lengths
worthy of implementation. Further, above 60 GHz an improvement in the wirebond S parameters is
seen, proving the band stop behaviour of the wirebond.
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Variation of Wirebond Length s with Er = 5

The value Er = 5 is chosen here as it occurs in chip packages. The propagation characteristics shown
in Fig. 7a and 7b for reflection IS 111 and transmission IS 121 respectively (w = 0.55, h = 0.635, L -
0.35mm, H = 0.14mm) provide similar information to the previous case, except for the transmission
IS 121 which does not show as big a change between s lengths. This means that with a lower dielectric
constant, s lengths slightly longer than 0.5 mm can be used.
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Fig. 7a: iS l l from FDTD for variation of s Fig. Th: IS 121 from FDTD for variation of s
with er=S5. with •r 5.

Variation of Wirebond Dielectric Constant Er

Fig. Ba and 8b show that IS111i and 1S121 characteristics respectively are better for the lower value of
dielectric material in the lower frequency range (w - 0.55, h = 0.635, s = 0.5mm, L = 0.35mm, H -
0.14mm). Yet at higher frequencies above 50 GHz, where the higher dielectric constant materials
band stop behaviour ceases, the lower dielectric material's band remains closed up to around 80
GHz. Some ripple in the ISi li and ISl21 values for •r 10.8 is seen. This is, as mentioned earlier,
due to the truncation of the DC offset error, which causes a ripple when the FFT is applied. Yet the
exact curve can be thought of as following a path in the middle of the ripple.
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Variation of Wirebond Microstrip line Width w

The connecting lines can often vary in width, to this end two different line widths are chosen. With

Er = 5, h = 0.635, s = 0.1ram, L = 0.35mm, H = 0.14mm, the results in Fig. 9a and 9b show that the

effect of the discontinuity worsens with increase in the microstrip line width. The band stop for the

0.55mm width lies further up in the frequency range as for the 0.85mm line width.
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Fig. 9a: IS I I11 from FDTD for variation of w Fig. 9b: IS 121 from FDTD for variation of w

Conclusion

The FDTD is used successfully to compute wirebond structures. This is verified through the good

agreement achieved with measurement. The variation of the material parameters associated with the

wirebond structure in the FDTD comprehensively analyses wirebond behaviour up to 80 GHz.

Observations indicate that the capacitative effects caused by the two microstrip open ends

connecting with the wirebond can compensate for the inductive behaviour of the wire and allow

transmission at the lower GHz range continuing later into a band stop characteristic in the higher

GHz range upto about 50 GHz, where the band stop ends and allows transmission again. For lengths

of s above 0.5mm, the inductance dominates the impedance presented by the wirebond and indicates

its unsuitability for implementation.
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SPACE AND TIME DISCRETISATION IN
FIELD COMPUTATION USING TLM

C. Cistopoulos and J.L. Herring
University of Nottingham

Abstract:

The implications for accuracy. resolution and computational demands of a range of meshing techniques
used in the transmission-line modelling (MM) method are described. Particular emphasis is placed
on the effectiveness and accuracy of the multigrid technique. It is shown that it can be simply
implemented and that it offers better spatial resolution and similar accuracy at low frequencies to other
methods at a fraction of computational effort.

I. Introduction

Computation of electromagnetic fields and circuits by numerical means involves discretisation in space
and in time. This process may be implemented in a variety of ways. In Transmission-Line Modelling
(TLM) discretisation in space is achieved by using lumped circuit equivalents, and in time by
describing lumped energy storage components by transmission line segments. Thus, field computation
is reduced to solving transmission line networks. Time-discretisation may be applied in the same way
to solve general lumped circuits. The discretisation process introduces dispersion and an upper
frequency limit to the validity of the computation. The use of a finite number of modelling elements
to describe fine features such as wires and plates introduces coarseness errors. Although these errors
may be reduced by increasing the number of modelling elements, in practice this leads to unacceptably
large computer requirements. The demands of simulating complex systems inevitably lead to the
requirement for multigrid methods and graded mesh techniques better suited to particular problems.

The implementation of TLM in recent years is based on the three-dimensional symmetrical condensed
node (SCN) pioneered by P.B. Johns[l]. The basic twelve-port node is useful for modelling cubical
space blocks and uniform materials. The addition of open and short-circuit stubs introduces the
flexibility of modelling inhomogeneous space (different e, and par) and also non-cubical basic blocks
(variable or graded mesh). The addition of stubs increases dispersion and also imposes a very small
timestep. Both these disadvantages may be reduced by the hybrid symmetrical condensed node
(HSCN)[2-4] where only open-circuit stubs are used, at the expenses of introducing three different link
line impedances. In its most general form the HSCN with electric and magnetic lossy stubs can be
used to model very general configurations[4]. In the modelling of wire-like structures or thin plate
conductors it is advantageous to use the HSCN in a configuration based on long and thin basic nodes.
However, the complexity of problems confronting the modeller is such that new more flexible
approaches to space discretisation are necessary.

A decisive step in this direction may be taken if the problem space is divided into regions where space
discretisation is done on the basis of the resolution required locally and not other global considerations.
This development referred to as the multigrid or subgrid technique has been described in connection
with TLM in [5,6]. The basic difficulty in such an approach manifests itself in TLM in the following
form: If a different space-step is used on either side of the interface between two different regions, this
inevitably leads to different time steps (loss of synchronism), and the loss of one-to-one
correspondence between nodes on either side of the interface (loss of connectivity). It is evident that
some form of space and time averaging is necessary at the interface. A pulse conversation scheme
to be used at the interface was proposed in [5,6]. The scheme is based, ideally, on adherence to the
following principles:
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(i) conservation of energy
(ii) conservation of charge
(iii) no reflections and zero delays at interface

As is shown in the references already cited, it does not appear possible to meet all three requirements
without increasing complexity to the extent that it neutralises any benefits of the multigrid mesh. The
scheme which the authors have found to be most efficient is one in which energy conservation is not
explicitly imposed. The implications of this are explored in this paper. In order to understand more
fully energy relations in a multigrid mesh the situation is first explored in a uniform mesh.

2. Energy in a Uniform Mesh

The electric and magnetic fields can be calculated either at a node or on the link-lines connecting
nodes. It is convenient to obtain the field at a node when several field components are required at the
same point and it is appropriate to consider the field on link-lines when dealing with closed surfaces
(e.g. when calculating the power flow through a surface surrounding an antenna). This last point is
illustrated in Figure I where it is apparent that corner nodes have to be treated as a special case if
node outputs are taken (Figure la) but link-line outputs can be processed in a uniform manner (Figure
lb). There is often found to be little difference between the two types of output beyond any expected
spatial variation. The field at a node can be considered as an average value obtained from the voltage
pulses (either incident or reflected) on the contributing transmission-lines. This has important
implications when calculating the stored energy since, when several quantities are considered, the sum
of the squares is not equal to the square of the sum. If high frequency energy is present then values
of energy calculated from fields at a node can be very different to those calculated from fields on link-
lines.

In the time-domain, for a single link-line with voltage pulses v, and v2, the electric and magnetic fields
are given by:

1 1
E - - (v v) and - (vl v2)

Al Z*AI

The electric and magnetic energy densities, w, and w. are given by:
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The total energy density can then be written as:
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O The total energy stored in the whole mesh is given by:

W - Al 2

where the summation is taken over all ports on all nodes. The stored energy calculated from fields
on, nk-lines is therefore proportional to the total energy of the individual voltage pulses and, because
the scattering matrix is unitary for a system with no losses, this stored energy will be the same on
successive timesteps. This condition is not met if the energy is calculated from fields at nodes.
However, at low frequencies, where the field variation is small, similar results may be obtained from
both link-line and node outputs.

To compare the values of energy obtained from the field at nodes and the fields on link-lines, a loss-
free cubic cavity is considered. For node outputs, the short-circuit boundaries are placed at the mid-
point of link-lines and for link-line outputs the boundaries are modelled with short-circuit nodes, thus
avoiding the added complexity of including incomplete link-lines in the energy -alculation. The
system is excited by placing x-polarised voltage sources at the mid-point of two sets of link-lines -
one parallel to the y-axis and the other parallel to the z-axis. This choice of excitation avoids the
situation which occurs when only one set of link-lines is excited and voltage pulses are zero on
alternate link-lines and during alternate timesteps and is thus representative of a real system.

For these comparisons, the factor l/cZ, is omitted and the node spacing is set to unity. The energy
is calculated from one of the following expressions:

2 ,~2 (2
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Figure 2a shows the value of expression (1) evaluated on each of 500 timestep. when an impulse
excitation is applied and boundaries are placed at the mid-point of link-lines. The simulation was
performed using single precision real numbers and this accounts for the very small perturbations about
the nominal value. Some single precision implementations can cause a very slight increase in energy
with time, but this is not a significant problem. Figure 2b shows the value of expression (2) over the
same period. It is apparent that the energy ig not constant with time and, more importantly, the
nominal value is significantly less than the expected value of 8. The energy calculated from
expression (3) is shown in Figure 2c. There are two orthogonal sets of link-lines for each polarisation
and so the expected value is 16. Within the accuracy of single-precision numbers, the expected result
is obtained.

The disadvantage of an impulse excitation is that it introduces energy at frequencies well above the
accepted maximum working frequency of the mesh, which is generally taken to be that corresponding
to a wavelength of 10 nodes. The calculation of energy within a more realistic frequency range can



be studied by replacing the impulse excitation with a Gaussian source. In discrete form, such a source
function can be written as:

f Inl - -

where s is the standard deviation expressed in terms of the 'imestep (s = a/At). Choosing s as 10,
injects a signal wt. ih is 0.7% of its d.c. value at a wavelength of 10 nodes and 29% at 20 nodes. The
corresponding energy curves are shown in Figure 3. over a period of 500 timesteps after the Gaussian
pulse has decayed to zero. The nodal energy varies between 98.60% and 99.34% of the expected
value and, although an underestimate, the error is not that great. The link-line energy varies between
99.448% and 99.462%. The fact that this energy is consistently low can only be attributed to single
precision arithmetic errors.

The calculation of energy in the presence of stubs can be illustrated for the same system by reducing
the timestep. For example, if the hybrid node is used and the timestep is halved then the normalised
link-line admittance must be 0.5 and open-circuit stubs of normalised admittance 6 must be added.
Expression (1) must be modified to include the transmission-line admittance and voltage pulses on
both link-lines and stubs must be included in the summation:

Y ,,2 (4)

where f'. is the normalised admittance. The total energy in the link-lines and in the stubs is shown
separately in Figures 4a and 4b, respectively. The response is dominated bv the first few resonances.
The stub energy oscillates in sympathy with the electric field since op-. .-circuit stubs are electric
energy storage components. The oscillation of the link-line energy is similar to that of the magnetic
field, although the link-lines also store electric energy. The total energy calculated from expressions
(4), (2) and (3) is shown in Figure 5. In this case, the value of energy calculated from individual
voltage pulses is twice the energy stored in the field. Reasonable estimates are obtained from both
node and link-line outputs. The nodal energy varies between 99.335% and 99.763% of the expected
value and the link-line energy varies between 99.565% and 100.007%. In the presence of stubs, the
link-line energy would be expected to give a poorer estimate, since the stub voltages are not explicitly
included, but this is not the case.

3. Energy in a Multivrid System

In a multigrid system, there is inevitably a loss of energy as pulses are converted from the fine mesh
to the coarse mesh. Tests must be performed to ensure that this problenm does not prevent useful
results from being obtained. In this section, the system considered consists of a cubic cavity which
is divided into two halves, both modelled with the same resolution, and Figure 6a shows the energy
irn each of the two halves, as well as the total energy, when an impulse excitation is applied -n one
half. The energy is calculated from the individual voltage pulses (expression (1)) and the graph is
plotted over a period of 2000 timesteps. In the steady state there is approximately equal energy in
each half. Figure 6b shows the corresponding curves when one half of the cavity is modelled with
a 40x40x20 node fine mesh and the other is modelled with a 20x20xIO node coarse mesh in which
the timestep is twice that of the fine mesh. The impulse excitation is applied in the fine mesh. It is
apparent that the total energy is decaying exponentially and there is consistently more energy in the
fier mesh. After 2000 fine mesh timesteps, the fine mesh contains 9.3% of the original energy and



p the coarse mesh contains 3.2%. If the impulse excitation is applied in the coarse mesh then the curves
shown in Figure 6c are obtained. Again, the excitation region contains consistently greater energy,
but here, the total energy loss is reduced. The final values of energy are 11.6% in the fine mesh and
19.'% in the coarse mesh. When the excitation is applied in the coarse mesh, the excitation region
contains proportionally less energy than when the excitation is applied in the fine mesh. This leads
to the conclusion that. in a multigrid system, the fine mesh will tend to contain more high frequency
energy than the coarse mesh. Also, there is some difficulty in transferring the high frequency energy
introduced by the impulse excitation across the interface since, in both cases, the excitation region
contains more energy than the other region.

The fact that energy is lost at high frequencies does not necessarily present a problem since it is
usually only wavelengths above the 10 node limit which are of interest. Figure 7a shows the energy
in the same multigrid system when a Gaussian pulse with a standard deviation of 20 fine mesh
timesteps is applied in the fine mesh region. The response is dominated by the first few resonances
but it can be seen that there is approximately equal energy in the fine and coarse mesh regions. The
final energy is reduced to 88.6% of its initial value after 2000 timesteps. The slight oscillation in the
total energy is due to the fact that some energy at the interface was not considered. The effect of
different reduction ratios on the total energy is shown in Figure 7b. The standard 2:1 result is shown
again as well as a 2:1 reduction in space only, in which the hybrid node is used to run the coame mesh
with the same timestep as the fine mesh. A 4:1 reduction in both space and time is also shown in
which a coarse mesh of lOx10x5 nodes is used. As expected, the energy loss is greatest for the
greatest reduction ratio. In general, the loss of energy will depend upon the system modelled, the
location and extent of the interface and the reduction ratio. If the area of the interface can be reduced
as far as possible, then the loss of energy will often be much less than indicated by the above results
even for quite severe reduction ratios.

4. Example

In this section, two different meshing techniques are applied to a problem to demonstrate their relative
efficiency and accuracy. The multigrid technique with a 7:1 reduction ratio is compared with a graded
mesh using the hybrid node. The system under consideration consists of a lm dipole placed centrally
in a l.lxl.lx2.0m3 cavity. For the multigrid case, cubic nodes are used and a 21x21xI12 0.476cm
fine mesh is placed inside a 33x33x30 3.33cm coarse mesh. For the graded mesh case, the largest
node dimension is 3.33cm and this is gradually reduced to model the dipole cross-section and to place
a cubic node at the dipole centre. For a dipole in free-space there is negligible difference between the
two methods but when many timesteps are performed in a closed system, the energy loss for the
multignd mesh can be observed. The current at the centre of the dipole is shown in Figures 8a and
8b for the multigrid and graded mesh methods, respectively. The resonant frequencies are in good
agreement but there is a reduction in amplitude for the multigrid case, particularly for the 414MHz
resonance. A comparison of the computer resources is shown in Table 1. The values for the uniform
fine mesh have been estimated for obvious reasons.

Table I

mesh storage timesteps cpu time

uniform fine 231x231x210 513 Mbyte 42000 >30 days

7:1 multigrid 33x33x30 coarse 4.0 Mbyte 6000 coarse 213 m1.
21x21x112 fine 42000 fine

graded 69x69x51 19.5 Mbyte 42000 2189 min.
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5. Discussion and Conclusions

The implications of different discretisations in parts of space were explored with emphasis on energy
conservation. Undeniably, further work needs to be done to address in more detail issues raised and
to propose alternative conversion schemes at the interface between regions described by a different
mesh. It appears that the worst case is that of a problem in a loss-less cavity where any
approximations in the conversion scheme have a more noticeable effect as signals suffer repeated
passes through the interface. In contrast lossy or open-boundary problems are unlikely to be affected
by such approximations. This is fortunate as it is with open-boundary problems where the need for
multigrid techniques is the greatest. Resolution ratios as high as 9:1 have been implemented without
instability but with a smaller energy loss. This energy is mainly associated with high-frequency
signals, beyond the coarse mesh frequency cut off point, and it is therefore of little significance. Since
the cut-off characteristics are not sharp, some care must be taken in applying multigrid techniques and
in intercepting results. This is particularly true for high resolution ratios and at frequencies near the
cut-off point. It appears that minimising the extent of the interface between regions of different
resolution is a good practice and must be adhered to as far as possible.
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Abstract
Time domain methods such as TLM and FDTD are attractive numerical techniques, but

they are also very computer time intensive. Therefore, techniques of computing must be
developed to reduce the execution time for these methods so that they can be used routinely in
commercial CAD software. Parallel computing is one possible approach; another procedure
that can be employed together with parallel computing, is distributed computing. This paper
addresses the basis of distributed computing techniques in the UNIX environment and then
applies the technique to parallel TLM computation.

Introduction
The basis of distributed computing is a client-server communication protocol. The field

simulation program must be broken down into a client module and one or more server
modules. The client and server modules communicate with each other through a client-server
communication protocol. Distributed computing can then be achieved by installing server
modules on all the machines connected to a network, say internet. This idea can be
implemented easily in the UNIX environment by using its pipe, fork and execIp commands.

UNIX Piping Technique
UNIX was designed for programs to work together seamlessly; piping is one of the

techniques available to achieve this. This idea can be easily illustrated by the following
command combination: ps I sort. The ps command prints information about processes
associated with the current terminal. The I operator sends the output of the ps command to a
sorting program sort. The fascinating thing, which is not obvious to the normal UNIX users,
is that the ps and sort commands are executed concurrently; the data produced by the ps
command are sent directly to the sort command via the internal memory of UNIX.
Therefore, no temporary file is needed and transfer of data between the two programs is very
fast. This is a uni-directional piping example: ps can send data to sort but sort has no
means to send data back to ps. This is only a limitation of the command interpreter, or shell as
it is called, not that of the UNIX operating system.

C



*include <fstream.h>

class Pipesa
public:

Pipes(char -child program, char -argl=", char larg2=1");
-Pipes(){ifs.cloae(0; ofs.close();}

void flush() (ots.flusho; j
int okay() 0 return (ifs && ofs)?l:O;1
/.----------------------
// Input Operators
//--------------------
Pipes 4operator>>(char &c)( ifs>>c; return *this; i
Pipes &operator>>(char -S)( ifs>>s; return -this; )
Pipes &operator>>(int 61)( ifs>>i; return -thisi i
Pipes &operator>>(float &f)4 ifs>>f; return -this;
Pipes &operator>>(double &d)| ifs>>d; return -this; I
Pipes &operator,>(lonq 41)f ifs>>l; return -this; 4

----------------------
// Output Operators
/----------------------
Pipes &operator<<(char c)1 ofs<<c<< '; return -this; I
Pipes &operator<<(char -a)( ofs<<s<<' ', return *this;
Pipes &operator<<(int i)4 ofs<<i<< ' return -this;
Pipes &operator<<(float f) f ofs<<f<<' ; return -this; |
Pipes &operator<<(double d)1 ofs<<d<< ; return -this;
Pipes &operator<<(long 1)j ofs<<l<<"' ; return -this;

protected:
ifstream ifs;
ofstream ofs;

4;/l--- Pipes ---- /

(a) NMIpe

#include 'Pipes.h
#include <sys/unistd.h>
#include <stdio.h>
#include <stdlib.h>

Pipes: :Pipes(char *child_program, char -argl, char -arg2):ifs),ofs()
int pl[2],p 2

(21;
//---------------------
// Create pipe-one
//----------------------
if (pipe(pl))l

cerr << 'Pipes::Pipee --- Cannot Create pipe-one!" << endl;
exit(l);

//---------------------
c/ create pipe-two

---------------------
if (pipe(p2))4

cerr << "Pipes::Pipes --- Cannot Create pipe-two!' << endl;
exit(2);

if (forko))
II-------------------------

// The parent process
-----------------

if (fdopen(pl[O],'r')==NULL)f
cerr << "Pipes::Pipes --- Cannot open pipe two for input!' << endil;
exit(3);

ifs.attach(pl(Ol);
close(plil]);
if (fdopen(p2[l],"w")==NULL)(

cerr << -Pipea::Plpes --- Cannot open pipe for output!' << endl;
exit(4);I

ofs.attach(p2l]);
close(p2[01);

elsei
----------------

// The child process
----------------

close(l); dup(pl1l]); close(pl(l]); close(pl(Ol);
close(O); dup(p2(01); close(p2[0]); close(p2[l]);
execlp(chlldprogram, child_program, argl,arg2,NULL);
cerr << *Pipes::Pipes --- Cannot load I << childyprogram << "I" << endl;
exit (5);

1II--- Pipes::Pipes --- 11

Wb Pipes.C

Listing I A C-+ implementation f a bi-directional pipe. Knowledge in C++, [1]. and UNX [2]. is
needed in order to fully understaWd the listig. Computatonal practitioners only need to know
how to use this obmect in their C++ programs.
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Listing 1 shows a C++ implementation of a bi-directional pipe object1, Pipes.
Knowledge in C++, [1], and UNIX, [2], is needed in order to fully understand the listing.
Computational practitioners only need to know how to use this object in their C++ programs.
A brief explanation for this object is:

"* The constructor2 of this object creates two pipes, p1 and p2, using the pipe
command.

"• The process3 that calls this constructor is split into two identical processes, a
parent and a child process of the same parent program4 by the f or k command.

"• The parent process attaches the output-end of pi and the input-end of p2 to its
input and output file streams (ifs and of s), respectively.

"* The child process attaches the input-end of pi and the output-end p2 to its
standard output and input streams, respectively.

"* The child process transforms itself into a new program, childprogram, by
using the execlp command.

"* After the constructor of this object has been executed, there will be two different
processes of two different programs running on the system. The parent process
can use the input, >>, and output, <<, operators of the Pipes object to
communicate with the child process. The child process can use the standard
input and output functions5 of the language in which the child program is
implemented to communicate with the parent process.

The above ideas are illustrated in Figure 1.

1. In object oriented programming, a collection of data and functions is called an object.
2. The function hving the sam nam as the object in this cse it is Pipes.
3. A running instance of a program.
4. It is very important to distngus between a program and its proces.
5. Fr C. they are the scan and print f functions. For Fortrwa they are the read and write subroutines.

(



enum MESSAGES I
ERROR. /. An error hand-shaking message.
OKAY, 1' A normal hand-shaking message. 'I

BYE, - --------------------------------------------->> BYE -

HPP NXPRCo,
MPPNYPROC,

SIM FORNASO, / numit

MESH CREATE, / x_size,y_slzedelta_ i--------------------- >> mesh /
MESH DESTROY, /* mesh '/
MESHSET VOLTAGES, / mesh,v
MESH SET VY, /* mesh,x,y,vy
MESH GET VY, / mesh,x,y ------------ > vy /
MESH_-WALI, /" mesh

ANALYZERACREATE, /* mesh,x,y,numt,num fJ min.fmax ------- >> analyzer I
ANALYZER-DESTROY, I' analyzer */
ANALYZER SET FREQ, / analyzer /
ANALYZER GET FREQ RES, /* analyzer --------- >> num f,rfl,rf2 ............. rfn '/
ANALYZER-GET-TIME-RES, / analyzer --------- >> num t,rtl,rt2 ............. rtn /

isting 2 An example U /M client-sev communicatim protocol The first two messages, ERROR and
OKAY are used for handshakin purposes. For every message the client process sends to the
servae process. the server process must reply with the apxopniat retmr values, if there we any.
terminated by oe of the above two messaes.The use of this protocol will be illustrated in det
later in this paper.

A TLM Client-Server Communication Protocol
Figure 1 depicts a parent and a child process linked together by a bi-directional pipe

object. These two processesi must communicate with each other through a pre-defined
protocol. Listing 2 depicts an example TLM client-server communication protocol. The first
two messages, ERROR and OKAY are used for handshaking purposes. For every message the
client process sends to the server process, the server process must reply with the appropriate
return values, if there are any, terminated by one of the above two messages. The use of the
other messages will be illustrated in detail later in this paper.

A TLM Client Program
Listing 3 shows a client ThM C++ program. The most important part of this program

from the distributed computing point of view is the MPP 2 object. This object is derived from
the Pipes object, Listing 1, therefore it has all the properties of the Pipes object. There are
five new member functions in the MPP object Nx Proc and Ny_Proc are used to enquire
about the dimensions of the processor array of the DECmpp 12000 on which the TLM server is
running. The check and okay member functions are for software handshaking between the
client and server processes. Finally, the Forward function is used to initiate a forward TLM
simulation. See "A Simulation Example" for a detailed explanation of the main function.

The constructor of the MPP object creates a bi-directional communication pipe between
the local TLM client process and the remote 2d-tlm-server process by using the UNIX
remsh 3 command. Once such a pipe is set up, the client and server processes can
communicate with each other via the communication protocol in Listing 2. For example, in
line 3 of the main function the mpp. Nx Proc function is called. This function sends the
MPP_NXPROC message to the server process, reads the returned values from the server
process, then returns the value to the calling function.

1. roim now on. the parent and child processes will be called the client and server processes, respectively
2. MWP stands for Massively Parallel Processor.
3. This is the HPUX implementation; the command name for other UNIX implementations is rsh.
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#include 'Analyzer.hl
•include *Meah.h'

#include <Stopwatch.h>

class MPP: public Pipes(
public: PP() :Pipea("remah, *eagle.bcac.gov.bc.cal,/"lusr/.. /2d-tlm-aerver') I

-MPPO(*this << BYE; okay0);1
int Nx Procol

Int nxproc;
this << NXPROC; flush();
"-this >> nxproc; checko;
return nxproc;

/I/--- NxProc --- II

int Ny_Proc()
int nyproc;
"this << NYPROC; flush();
-this >> nyproc; check0);
return nyproc;

I//--- NyProc --- //

void checko(
int status;

this >> status;
if (status.-=OAY))

cerr << NMPP piping error!';
exit (statue);

}//--- check --- /

void okay)0) flush 0; check(0; 1

void Forward(int num)t *this << SIM FORWARD << num; okay();)
1; //--- MPP --- I//

/* 1 / void main)))
/ 2 / MPP mpp;
/' 3 */ Mesh mesh(&mpp,mpp.NxProc(),mpp.Ny ProC(),7.112e-3/(mlp.Nx_Proc0 -1));
/* 4 */ Analyzer analyzer(&mpp,&mesh,64,32,8000,101,40.0e9,60.oe9);
/' 5 '/ Stopwatch swl,sw2,sw3;

/* 6 '/ mesh.Wall(-l.0, 0, 0,127, 0); // Set up waveguide boundaries
/* 7 */ meah.Wall(-l.0, 0,63,127,63);
/* 8 */ mesh.Wall(-l.0, 0, 0, 0,63);
/* 9 */ mesh.Wall(-l.0,127, 0,127,63);

/I 10 */ awl.startO; // Start the stopwatches
/* 11 / sw2.atarto;
/* 12 '/ sv3.start();
/* 13 */ mesh.Set Vy(20,20,1); // In)ect signal
/* 14 */ mpp.Forward(8000); // Forward simulation
1' 15 -I swl.stopO; // Stop stopwatch-i
I* 16 */ mpp.NxProco; // Purposely block the client process so that

// stopwatch-2 would record the CPU time for
// the 8000 iterations.

I* 17 '/ sw2.stopo; I/ stop stopwatch-2
/* 18 */ analyzer.GetrFreqResponseO; /I Get frequency response
I' 19 sI ew3.stopo; // stop stopwatch-3

II The difference in time between stopwatch-3 and
1/ stopwatch-2 is the time required to get the
// frequency response from the server.

/* 20 '/ analyzer.PrintFreqResponse(cout); // Print frequency response

/* 21 '1 cout << 'Stopwatch-l" << endl; // Output stopwatch-i data
/* 22 'I cout << "real " << awl.real() << endl;
/* 23 c/ cout << "user - << awl.user() << endl;
/* 24 / cout << -system - << awl.eyatem() << endl << endl;
/ 25 / cout << "Stopwatch-2- << endl; // Output stopwatch-2 data
/* 26 '/ cout << "real " << sw2.real() << endl;
I' 27 */ cout << 'user " << sw2.user() << endl;
/* 28 */ cout << "system " << sw2.systemo << endl << endl;
/* 29 c tout << "Stopwatch-3" << endl; /I Output stopwatch-3 data
/ 30 / cout << "real - << sw3.real() << endl;
/. 31 ./ cout << "user " << sw3.user() << endl;
/' 32 */ cout << "system <I sw3.8ystem() << endl;
S33 -/)I/--- main --- 11

listing 3 A TLM client program. The most important part of this program from the distributed computng
point of view is tie MPP object This object is derived form the Pipes objec Listing 1.
thelefore it has all the . oe the Pipes object plis some of its own. There am five new
member functions in the MPP object Nx Proc and NyProc ae used to enquire abost the
dimensions of tde processor anry of the IgEFmpp 12000 on which the TLM server is rnning.
The check and okay member funtions are for sofware handshaking between the client and
sever pracrss. Finally, the Forward function is used to initiate a forward TLM simulatio. he
Mesh and Analyzer objects inline 3 and 4 of the mainfunction am implem ted using the
same mesae protocol. See "A Simulation Example" for a detailed explanation of the main
functi•



Supporting Functions

inline void Okayc) I printt(" %d -, OK~AY ); tf lueh(stdout),

Inline void Erroro) i printf(* %d ERROR); ff lush(stdout);
inline void Bye() Okay(); )
inline int Get tnt (tnt '1)4 return scanf (% d 1, 1);
inline void NxProc() 0 printf(- %d - nxproc); Okay(; I

void Abort (char *fag)i
fprintf(stderr,"Server Aborted: %s!\n1,msg);
exit (ERROR);
./'--- Abort --- /

int Get~essagelint *in)(
int okay;

okay = Get_int(in);
if (okay)

return okay;
else

Abort(-Invalid Input Bye!\n");
1/'--- GetMessage --- /

Main Function

void maino)
mnt message;

while (GetMessage(&message) && message!=BYE) {
switch (message) I
/---- MPP Specif ic Functions --- *
case MPP NXPROC: NxProco; break;
case MPP-NYPROC: NyProco; break;

/*--- Simulation Functions ---- /
case SIMFORWARD : SimForwardO; break;

/*--- Mesh Function ---- /
case MESH CREATE: MeshCreateo; break;
case MESH DESTROY: MeshDestroy4); break;
case MESH SETVOLTAGES: MeshSetVoltages(); break;
case MESH SET VY: MeahSetVyo; break;
case MESH GET VY: MeshGetVyo; break;
case MESH-WALl: MeshWall(); break;

/*--- Analyzer Function ---. /
case ANALYZER CREATE: AnalyzerCreateo; break;
case ANALYZER-DESTROY: AnalyzerDestroy); break;
case ANALYZER-GET FREQ RES: AnalyzerGetFreqRes(); break;
case ANALYZERGETTIMERES: AnalyzerGetTimeRes(); break;

/I--- Unknown Request ---- /
default: ErrorO;

Bye 0;
)/*--- main --- */

Lsting 4 Code segMent froM 2d-tlzm-server.m. an MPP implementation of our TLM serve.

The Mesh and Analyzer objects in line 3 and 4 of the main function are
implemented using the same message protocol. The algorithms for these objects are published
in [31 and [41, therefore they are not repeated here. The major difference between the
algorithms in the server program and the published ones is that the ordinary function calls are
replaced by sending and receiving messages.

A Parallel TLM Server Program
Listing 4 is an exerpt from our parallel TLM server program, 2d-tlm-server.nM

which is written in MPL, a C-like language. The main function of this program is just a
message loop which keeps polling data from its standard input stream. This stream is
connected to the output file stream of the client program via a Pipes object, see Figure 1.
Once a message is received, the switch statement determines what message it is and calls the
corresponding function.

For instance, if the incoming message is MPPNXPROC, then the NxProc function is
called. This function sends the value of nxproc to the standard output stream terminated with
an OKAY message so that the client process can verify that the request was indeed completed
successfully.
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A Simulation Example
The main function in Listing 3 simulates a WR28 rectangular waveguide cavity. The

purpose of this example is to illustrate the use of this distributed computing technique, not the
correctness or other properties of the TLM method.

Line 2 of the main function creates a MPP object, which is a parallel TLM server
running in a remote site on the network. Lines 3 and 4 declare a Mesh and an Analyzer
object. The Mesh object represents a cross-section of a WR28 rectangular waveguide; the
mesh size is 128x64, and Al is 0.056mm 1. The Anal yzer object specifies that the signal is to
be sampled at node (64,32)2, 8000 iterations are needed, and 101 equally spaced frequency
points from 40.0 GHz to 60.0 GHz are chosen for the Fourier transform operation. These two
objects communicate with the MPP objects to perform TLM and Fourier transform
computations.

Line 5 declares three stopwatches which will be used to time the execution of the client
process in various locations of the program. Lines 6 to 9 set up the boundaries of the
waveguide wall. Lines 10 to 12 start the stopwatches.

Lines 13 to 15 inject a signal into the mesh at node (20,20), ask the server to perform
8000 iterations and stop the first stopwatch. For a normal process, line 15 would not be
executed until the 8000 iterations have been finished. In this client process, line 15 is executed
as soon as an OKAY handshaking message is returned. Stopwatch-I in the table of Figure 2
confirms this behaviour. This feature allows the client process to communicate with a number
of server processes with minimum delay so that they can work concurrently to solve large
problems.

Line 16 blocks the client process so that stopwatch-2 records the CPU time required for
the 8000 iterations. The time difference between stopwatch-3 and stopwatch-2 is the time
required to retrieve the frequency response.

The remaining lines in the listing are self-explanatory. The output of this program is
summarized in Figure 2.

1. The dimension of the processor array of the MWP available to us is 128X64.
2. XY co-ordiate nortnalized to Al.

C



Applications of Distributed Computing Technique to
Computational Electromagnetics

The previous example illustrated the use of distributed computing in TLM
computation. The technique introduced in this paper, in particular the bi-directional Pipes
object in Listing 1, is very general, . Therefore, all CPU time intensive frequency and time
domain methods, such as FDTD, MOM, etc., can use this technique.

Optimization, especially hybrid frequency/time domain optimization [5], is an area to
which distributed computing techniques can be readily applied. The basis of all optimization
programs is repetitive iteration - i.e. computation of the response of the structure to be
optimized based on some strategic approaches with a large number of different values for a set
of variables, and the selection of a combination of values that give the best response. The speed
of this operation can be greatly increased if these unrelated simulations can be executed on
separate com puters and solved concurrently. The table in Figure 2 shows that network delayl

is negligible even compared with the short parallel computation CPU time. Therefore the
increase in performance would be linearly3 proportional to the number of available stations4.

Conclusion
In this paper, we have addressed the basis of distributed computing and given a

complete C++ implementation of a bi-directional pipe object. This pipe object allows
computational practitioners to use distributed computing techniques to solve complex
electromagnetics problems. Program segments from our TLM client and MPP server programs
are given and used to illustrate the distributed computing technique. A detailed sample
program is also presented with a thorough explanation. Optimization, especially hybrid
frequency/time domain optimization, of microwave and millimeter wave circuits is one of the
areas to which this distributed computing technique can be readily applied.
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1. The time difference between stopwatch-3 and stopwatch-2.
2. The client process should retrieve as little data as possible from the server process. Tberefore. Fourier transform and

other data processing should be done on the server side, only the frequency response or S-parameters should be
fetched back to the client process.

3. It should be linear as long as the number of stations is within a practical limit, say less than 50.
4. The stations should be of similar speed, otherwise special steps must be arried out to prevent the slow station to

slow down the client and other server processes.



TLM: Order of Accuracy Enhancement

A. Soulos (a), D. de Cogan (a) & P. Enders (b)

(a) School of Information Systems, University of East Anglia, Norwich NR4 7TJ, UK
(b) Stendaler Strale 126, D-12627 Berlin, FRG

The transmission-line matrix modelling method (TLM) has several advantages over other time-domain finite-
difference (TD-FD) algorithms, such as being one-step explicit and, at least when applied to diffusion
processes, unconditionally stable. But its order of accuracy is not higher, than that of the conventional TD-FD
method, viz, O(At+Ax 2) and O(At 2+Ax 4 ), respectively, depending on the circuit parameter values used. It will
be shown, that stubs can be used to increase the order of accuracy without loosing the freedom in the choice of
At, when the stubs involves also a free resistive element.

I. INTRODUCTION

Within transmission-line matrix modelling (TLM), field propagation is mapped onto travelling
voltage pulses on a mesh of lossless transmission lines and lumped iesistors [(]. Use is made of
known analogies between the field variables and the circuit variables. The conceptual and
computational simplicity attracts an increasing number of applicants. Nevertheless, the
accuracy of this algorithm has been tested by comparison of" more or less specific numerical
results, rather than generally investigated. This contribution undertakes a first attempt
considering the case of ID overdamped waves. However, the approach proposed can easily be
extended to weekly and undamped wave propagation as well as to higher space dimensions.

The basic parameter is here the order of accuracy It measures, how the discretization error
vanishes, when the mesh is refined. It turns out, that the freedom in the choice of Z cannot be
used to enhance the order of accuracy. For this, stubs are included, where, following an idea
which the late Peter Johns proposed to one of the authors (D. de C.), the stub transmission
line, Z., is complemented by a stub resistor, Rs. As Zs represents a distributed capacity, such a
stub is closer to the unity of resistive conduction and capacitive storage, which is characteristic
for diffusion-like propagation. Rs should proof to be crucial for the purpose of this
investigation.

This network will be examined, starting with the derivation of the corresponding TLM
difference equations in section 2. In section 3, consistency and accuracy of this new routine
will be considered. The new algorithm will be tested by means of a standard problem, where
the exact analytical solution is known.

2. ID NETWORK WITH RESISTIVE STUB
2.1. Scattering of currents

Consider Figure 1. Introducing left-to-right and right-to-left running pulses as usually, one has
incident from the left and right, and from the stub, respectively, the pulses

i. i zSi i S ~• i
IL; V L= R YR, V•= Z ,'R Is; V' = Zs's (")

(I1L and ViL correspond to 1i and V1 in Figure 1). The outgoing ("scattered") currents are
connected with those via a "scattering matrix" S, as



iss

I-P-T'~~~ !1-s)I

where the reflection coefficients for the link lines and the stub, respectively, are

2R(Rs+Zs)+(R+Z)(R-Z). Z+R+2Rs-2Zs 3a"p -= (R+Z)(R+Z.2Rs+2Z) Ps=I-TS= Z+R+2Rs+2Zs (2)

r' denotes that part of the incident current being first transmitted from the link line to the node

and then flowing into the stub,

R+Z 2Z
R+Z+Rs+Zs R+2+2Rs +2Zs

Substance/charge conservation is guaranteed due to the fact, that the matrix elements of each
column sum up t, unity,

E'i (Sl)ij = I for all j (4)

2.2. The incoming voltages and the node voltage

Consider now the voltage propagation in more detail; first, from the incidence along the
transmission lines up to before meeting the node point. Due to the impedance discontinuities,
fractions VP of the voltages of tne incoming pulses, Vi, eq.(1), are backscattered at the ends of
the transmission lines,

L,R LR PZILR; VS - psV = PSZsIS (5a)

That pulses that are forward scattered, je, transmitted towards the node, carry the voltages

VL,R = (1 + P)VL',R = (1 +P)ZILR; VI =(+Ps)V (1+ps)ZsI• (5b)

Passing the resistors, these voltages are diminuished by a voltage drop of RI4, Rlt , and RI,

respectively. The resulting pulses incoming at the node, VRS constitute the node voltage,

Vn =Vn + Vn + V = V- RIL + Vt- RI, +V -RsIt

= (1 +p)ZIL - R(1-p)IL + (1 + p)ZIR - R(I - p)1i +(1+p)ZI - R( I Ps)I (5c)

2.3. The outgoing (scattered) voltages

Second, the current pulses leaving the node point carry voltages according to the resistances
and impedances of the branches. However, not the total node voltage, Vn, causes the branch
currents leaving the node point, but only the forward-scattered voltages from the
correspondingly other branches, viz,



is,-,Pi =(G-T')Ik +' 1T - -• [(,-+P)Z, -,,Ri +(I+p 5 )z5 sI -.SRSI] (6a)

il -pJi =(TT'iL +J-~i = 1-
L L R2 S 5-R+Z LRLRS S

,. = z-1-- [(1 +,>)•,l'- , R'., + (I +,> s)Zs'-,'.RI '] (6b)
is - i~ ='(l +T~ = 1 [II(p)Zl - RTIl' +(I+p)ZI' -RtIl] (6c)

Thn,, thereis a,, volg drop of ,.(,is -IL), R(I< -pI ), and RP(Is -p'i), respectively.

On the transmission lines, the reflected pulses, V•,R,S, add, such that, finally, the scattered

pulses carry the voltages

VIs = (R + Z)(Is -L,)- R(Ig -pil)+ ZpIl = ZIl (7a)

V=s (R + Z)(I- pl)- R(I - pI ) + ZplIR = ZlIs (7b)

V• ,, (Rs + z)(,s -,>,l -, .(S - •) + z>,sPl= zjSI (7c)

Therefore, despite of the different scattering rule for voltages and currents at impedance
discontinuities, the relation between the scattered voltages and the scattered currents is the
same as between the incoming ones (ie, Ohm's law; see eq.(1)), as to be expected. In summary,
the voltage scattering can be described by means of a scattering matrix, SV,

pv I-p-TI I 0ps) / v )

z (,_8)v/ vV~/s'v. ,)
s pv-1 -P P -,-,P2) VR' =S VR. =S Vl (

YSS Ls r, LS C' 2Z5 S V~ def i i
Z z

where Sit denotes the transpose of S1, eq.(2). Without the stub variables, this is the scattering
matrix given by Johns [2].

2.4. The TLM difference equations

As noted above, the representation of the cell capacitance by transmission lines renders the
time discrete, the time step, At, being fixed by the pulse travel time on these lines. Hence, the
pulse scattered at time step k at node i are, at time step k, incident at the neighbouring nodes,
i±l, or at the same node (after reflection at the stub end). Thus, the TLM difference equations
for the voltages read

Vs(i)' FVL.i)' 'Vi0-)L
v,)/=SV/v.) v i+) (9)

("kt VS(1)) kt VS,(i) k+l!< VS,(i)



Eliminating the scattered pulses and introducing node number shift operators z and x as
xV(i)=V(i+ 1) and x V(i)=V(i- 1), equations (9) become

(-t. (10)

k+,v 1 2 tS S)k

These coupled partial difference equations are easily diagonalized by means of the Caley-
Hamilton theorem. This states that a matrix fulfills its own eigenvalue equation. Consequently,
each component of the voltage vector in eq.(l 0) obeys the equation

k+3VM =Ps +(T - _'[ -½r'cs]X +((,[- ,,) 2 _ p2lk+1Vý

_.C,2 2]Ps+.C Ts( _. +,,)2 i -(11)" - P JkVM x_=+1; M:LRorS

In contrast to the stub-free case, the scheme (11) is ftree-step, and the number of mesh points
which enter the calculation of kV is significantly higher (as to be expected from an algorithm of
- potentially - higher accuracy), see Figure 2. Since the field variables are linear combinations
of these voltages, it is sufficient to consider in what follows just one of these equations (11).

3. CONSISTENCY AND ACCURACY

3. 1. Continuum limit of the discrete diffusion equation (11)

The continuum limit of formula (11) is

4 4 AtrAx 2 s ar+2s 5 10
V(x,t)= I Y a.. 2s 2 V(xt)+O(At +Ax° (12)

r=0 s=0 r!(2s)! a s

Due to aoo=l, the 0th-order terms, V(xt), cancel. The 1st-order terms form the diffusion
equation, since

a02 = ZZs D At (13)
alo R(Z+2Zs) Ax2

where D denotes a difflusivity. Notice, that Rs does not enter this relation. Therefore, the
scheme (11) is consistent with the diffusion equation up to the order O(At 2+Ax4).

3.2. Numerical investigation of the accuracy

As a standard problem with known analytical solution, the temperature diffusion in an I D
infinite copper bar (D=-1.17cm 2s-1) excited with a single impulse of strength 3 at its centre
(x=0) is considered. The network of Figure I is excited with 0 ( )=0VR(i)= 0  (i) = 0i0 The

relative error of the numerical results when compared with the analytical solution,
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kA(i)= 44,--t expl 4Dk, t (14)

is observed, at the centre node i=O, to behave as

kgrel = kV(O)-kA(0) ,as (15)
kA(O) k

The asymptotics ock- 1 holds exactly in the stubless case [3]. eas depends on the network
parameters. Figure 3 shows an early result of eas as function of Z and Rs; the other parameters
being Ax=-1.0, At=0.1, R--0.125. It is suggested that the contour eas=0 indicates parameter
values with small error for large k-values. It should be noted, however, that this region exhibits
larger errors for small k-values. This region has to be investigated in finer detail and over a
wider range of Rs and Z.

4. DISCUSSION

The TLM algorithm is proposed to be extended by a series resistor Rs in the (capacitive or
inductive) stub. In the case considered, this additional element does not affect the relation
between the mesh and the propagation constant, but can be chosen to minimize the
discretization error. The computational effort is not increased, once the scattering coefficients
are calculated. In inhomogeneous materials, Rs may vary properly as a function of the mesh
coordinate.

Evidence has been obtained, that this stub allows for a systematic improvement of accuracy.
Further studies should relate the vanishing of Eas with the order of accuracy and extend this
optimization to the relation between the initial pulses on the link lines and on the stub line.

Subsequent work should be devoted to the extension of this approach to other problems and to
the question, whether the order of accuracy can be further increased, to O(At 3+Ax 6 ), by
properly chosing Zs.
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Abstract
A technique is introduced for the analytical computation of the impulse response
(Johns' streams) of dispersive structures from frequency domain expressions. This
technique, combined with a procedure which converts the TLM field quantities into the
modes of the outer region, allows to dramatically reduce the computational burden. In
this communication the analytically calculated Johns' stream are compared with the
numerical one and several interesting features are pointed out. The new Johns streams
are also used in actual TLM computations; results obtained via the numerical and the
analytical Johns responses are also presented demonstrating the effectiveness of the
proposed approach.

Introduction
Since its introduction ( l the TLM method has been extensively used for solving complex

boundary value problems [2,31. The TLM makes use of discretized field quantities in a given volume of
space. As for similar numerical methods, problems arise when in the domain of interest becomes
infinite. In this case it is necessary to truncate the mesh and to introduce a suitable scheme to account
this truncation. To this end the diakoptic procedure has been introduced in (41. The diakoptic approach
solves rigorously the problem of absorbing boundary conditions (abc). However, the considerable
numerical effort involved in the application of such an approach prevents its application in practical
cases. The sources of the numerical burden are essentially the following [5]:
- for each node on the boundary the Johns matrix must be calculated in advance;
- during the TLM simulation the incident waves at each node must be convolved with the appropriate
term of the Johns matrix.

In order to reduce the computational burdens several simplifications have been devised. The
simplest arises when the incident wave is a TEM wave. In this case it is possible to terminate the
TLM mesh directly in a resistance of proper value. Moreover, since the closing element is purely
resistive, convolution is not necessary.

Another significant simplification has been introduced in [6] for homogenous waveguide. In
that paper it has been observed that, inside a waveguide supporting only the fundamental mode, it is
not necessary to perform the convolution at each point of the boundary. In fact the value of the field at
the various points of the boundary are related in as simple way.

A rigorous abc for homogenous waveguide which accounts for higher order and evanescent
modes, has been recently introduced [7]. This abc is based on representing the fields arising from TLM
computation as a sum of frequency independent modes with appropriate amplitude coefficients. The
amplitude of each mode is separately convolved with the corresponding modal Johns response.
Afterward, the TLM fields are retrieved from the modal amplitudes.

Several advantages, and dramatical numerical improvements are obtained by using these new
ABC. To cite just a few of these advantages, the new abc provides:
- absorbing boundaries for multi-modal propagation;
- the possibility to consider also evanescent waves at the boundary;
- the reduction of the size of the TLM computational domain;
- a considerable reduction of the numerical effort, with respect to classical diakoptics (typically two
order of magnitude)

Nevertheless, the major source of numerical burden still are the convolutions and the
calculations of the modal Johns responses. In fact, the latter are generally pre-calculated by rather
lengthy simulations.

B.



In this work we show how to avoid these TLM simulations, by analytically calculating the
modal Johns responses.

Analytic computations of the modal Johns responses
Let us consider a parallel plate waveguide where only the TEM mode is present. We can

describe this structure by its TLM mesh as shown in Fig. 1.

A T-11

- /•," . EM mod.e ..
10/ (constant am~p=itude along 'AA')

Fig. I TLM description of a parallel-plate waveguide using a 2-D mesh terminated at the reference

plane AA'

We want to terminate our structure at the right of the plane AA'. It is well known that we must

truncate each TLM transmission line in the characteristic impedance &, therefore obtaining an

impulse reflection coefficient given by [9]:

zo Zo

Fi - zo 0--.17157
+ Zo

(1)
This amounts to a matched load for a TEM wave traveling in the mesh in a direction normal to the
boundary.

If we are now considering a parallel plate waveguide with just the fundamental TE mode
present we have again the TLM mesh on the left, while on the right we must terminate each TLM

transmission line in Z2 where ZTE is

ZTE above cut-off

ZTE - 2k2 below cut-off

(2)
As a consequence we get the following impulse reflection coefficient in the frequency domain:

ZTE(O) - Zo

ZTE((O) +

N42
(3)
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Fig.2 2-D mesh with single mode propagation terminated with ZTE

This amounts to a match at the frequency co for a TE wave traveling in the mesh toward the boundary.
Fig. 3a and 3b show the 1(o) calculated analytically.
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Fig. 3a Imaginary part of the impulse reflection coefficient 1i

The normalized frequency is the frequency divided by the cut-off frequency. Observe the different ranges
of the normalized frequency on the two graphs.

For transformation from the frequency domain to the time domain it is necessary that our
function satisfies:

Re[ F(to) ] Re [r(-o) I
Imr[ F() 1 = -Im F(-ca) 1

(4)

C
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Fig. 3b Real part of the impulse reflection coefficient 1"

Moreover, after consideration of the ZTE asymptotic behavior for to -> it is also convenient to
separate our reflection coefficient into two different parts:
i) a constant, which is equal to c ! = - 0. 17157
ii) a function going to zero at high frequency.

The transform of the constant is a delta function and corresponds to the high frequency content
traveling along the guide as a TEM wave which is absorbed. The transform of the remaining part is
calculated numerically. In fact, by introducing

r'(o)) = r((o) -cl
(5)

and by applying (4) we have:

00

rl(t)= f F'(o) ejmOtd = J Re[F r'(w)] + j imi F(o)]) I (cos cot +j sin totI dco

and therefore, since the integral of the product between an even and an odd function is zero we get:

r(t) = 2 1 f Re[ F'(o)] cos Wot do) - J Im[ r'((o)] sin cot do) }
0 0

(6)

After subtraction of the constant c I the reflection coefficient becomes band-limited in the
frequency domain. While its imaginary part remains unchanged, its real part becomes the function
shown in Fig. 4.
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Fig. 4 Re[ P(w)] as function of the normalized frequency

Since the signal in the frequency domain is limited to a relatively narrow band, it is expected
that its time domain transform is spread out in time. The frequency domain energy content is
essentially due to the components near and below cut-off. The signals just above cut-off propagate very
slowly, giving rise to a very long tail in the time domain. The signal below cut-off corresponds to
evanescent waves going back and forth near the excitation point. These waves remain trapped near the
excitation point since they are prevented from traveling along the guide.

We can now separately Fourier transform the signal and the constant cI. In this way we obtain
the Johns response shown in Fig. 5. Note that this signal is composed of a Dirac pulse plus a long
lasting time signal. The pulse corresponds to the constant cl and takes into account the very high
frequency content of our impulsive excitation. This part of the signal is absorbed like a TEM wave in
the parallel plate waveguide. Fig. 5

It is important to observe that the integral of the signal must be equal to - 1.
Note that a similar approach, in which frequency domain data are transformed into the time

domain, has also been used in [8] (i.e. a TLM analysis of very thin resistive sheets) leading to a
different procedure. In particular, in [8], the data have been considered as periodical in the frequency
domain. While this approach is appropriate for that problem, it is not convenient when calculating the
Johns response.

Comparison between the analytical and numerical modal Johns
responses

It is now interesting to compare the results obtained in the previous paragraph with those
obtained from TLM simulations. An example of such a comparison is reported in Fig. 5. It is apparent
that, apart from the initial transient, the numerical Johns response and the analytical one are almost
identical (it is impossible to distinguish between the two curves).
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Fig. 5a Comparison of the early terms of the Johns matrix computed via TLM simulation and via
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Fig. 5b Comparison of the late terms of the Johns matrix computed via TLM simulation and via

analytical formulation

However, the initial difference is to be expected. In fact, the TLM simulations are only valid
up to a certain frequency. Since the early response is mainly due to the high frequency content of the
signal it is trivial that, in this region, some differences exist between the TLM response and the
analytical one.

It is also worthwhile to note that even for the case of TEM propagation inside a parallel plate
waveguide the same differences are present. In this case it is well-known that a rigorous absorbing
boundary condition can be obtained by terminating the mesh in the proper resistance as already shown
in Fig. 1. However if we apply the diakoptic procedure we get a different result. In fact the TLM
impulse response will show an initial transient different from the physical one.
Fig. 5b shows the comparison between r(t) calculated analytically and that obtained from the numerical
Johns response.



e
To further investigate the behavior of the numerical Johns response it is convenient to

compare its Fourier transform with the analytical reflection as calculated from (3).
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Fig. 6. Comparison between the Fourier transform of the numerical Johns response and the

reflection coefficient calculated analytically

Numerical results
However, the analytically computed Johns modal response can be used in subsequent

,;omputations providing fairly accurate results. A symmetric and an asymmetric thick iris in a WR (28)
waveguide have been analyzed. The mesh has been terminated V20 from the discontinuity. Results are
compared with those obtained using the Johns matrix computed via TLM.

1.0.

o.ISII

0.*

0. - abc with Johns (analytical)

.......... abc with John (TLM)

0.0

Frequency (GHz)
Fig. 7 Magnitude of S-parametei., for an inductive iris in a WR 28 waveguide

(aperture: 2/3a, thickness a/6)
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Fig. 8 Magnitude of S-parameters for an asymmetric inductive iris in a WR (28) waveguide
(aperture 5/6a, thickness a/6)

Conclusions
The scattering impulse response (Johns' streams) of dispersive structures has been calculated

from the frequency domain expression. By considering the impedance of the TLM mesh and by
separately transforming the asymptotic term, it has been possible to calculate the Johns' stream for the
fundamental mode as well as for higher order modes.In this way a dramatical reduction the
computational effort has been realized.

The analytically calculated Johns' stream have been compared with the numerical one and
several interesting features have been pointed out. The new Johns streams have also been used in actual
TLM computations providing results almost identical to those obtained via the numerical responses.
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Transmission-Line Matrix Modelling and Huygens' Principle or

The Range of Applicability of TLM

PETER ENDERS

Stendaler Str. 126, D-12627 Berlin, FRG

Abstract. As natural processes take place in space and time, a time-domain approach may be
closer to the physical reality, than other ones. Huygens' principle (HP) is a very general law for
propagation. In the sense of action-by-proximity (Faraday) and superposition of secondary
wavelets (Huygens' construction), it will be applied to the field propagator (Green's function).
Mathematical expression of HP is now the Chapman-Kolmogorov equation. This new formu-
lation leads to a unified representation of not only damped and undamped waves, but of vir-
tually all phenomena being tractable by means of explicit differential and difference equations,
respectively. Numerical algorithms which realize HP in discrete form provide a universal tool
for the computation of such processes. The transmission-line matrix modelling method is such
an algorithm; the Johns matrix being the appropriate Green's function. The principles of a
monolithic TLM model of electromagnetic field, current carrier, and heat dynamics and their
interaction in semiconductor devices will be outlined.

1. Introduction

TLM involves a discrete formulation of Huygens' principle (HP). This relationship is usually
demonstrated by means of the 2D scalar TLM mesh (Johns 1974). One of the goals of this
contribution is to establish it for the TLM method as a whole using Green's functions (GF).
GF represent one of the most powerful and, at once, most beautiful and clear (propagator!)
tools of Mathematical Physics at all. Thus, another goal is to show, that certain GF themselves
may provide an exact and clear, because immediate formulation of Huygens' construction. It
is aimed at a formulation of HP which contains no assumptions or simplifications, but even
extends the application to virtually all propagation processes, which obey the principle of
action-by-proximity and can be treated by means of explicit transport equations.

A discrete treatment quickly leads to random walks and related problems of probability
theory. A rigorous treatment requires measure theory. This is much more, than necessary for
the understanding of "common" physical propagation processes. But it may proven useful for
later generalizations [eg, fractals for the description of wave propagation in disordered media,
West (1992)]. The use of GF within such considerations is not new. However, this contribu-
tion concentrates on a new representation of HP through GF and not on a discussion of the
probabilistic questions behind such approaches.

In order to avoid confusion, section 2 starts with Hadamard's notion of HP being the
most exact one known to us. The superposition of secondary waves will be represented by
means of general field propagators. Huygens' construction then means that these propagators
(GF) obey the Chapman-Kolmogorov equation, the equation of motion of Markov processes.
This leads to a description of wave motion, which overcomes certain difficulties in the inter-
pretation of GF and of Kirchhoffs formula. Section 3 illustrates these ideas through discrete
examples and discusses implications for practical computations, in particular, the fascinating
perspectives for treating complex systems, such as lasers and semiconductor devices. Section
4, finally, condenses these results into thesis for the formulation of such a generalized HP and
concludes this paper.



2. Huygens' principle and Green's functions
2.1. Hadamard's notion of Huygens' principle

It is preferable to follow Hadamard's exact representation of HP in form of a syllogism
(Hadamard 1953, § 33):
(A) Major premise: "The action of phenomena produced at the instant t=O on the state of

matter at the time t=t0 takes place by the mediation of every intermediate instant t--t' ... ";
(B) Minor premise: "The propagation of light pulses proceeds without deformation

(spreading, tail building) of the pulse";
(C) Conclusion: "In order to calculate the effect of our initial luminous phenomenon pro-

duced at coo at t-O, we may replace it by a proper system of disturbances taking place at
t--t' and distributed over the surface of the sphere with centre coo and radius c(t'-t)."

Proposition (A) is the principle of action-by-proximity, proposition (C) is essentially Huygens'
construction. Proposition (B), in contrast, holds less generally, namely for some special cases
only. Well known examples are the lossless wave equation (d'Alembert's equation) in odd
space dimensions and the distortion-free special case of the ID telegrapher's equation
(Heaviside, Pupin): "...when a source irradiates waves within a time interval At, then this
stream of waves should affect the receiver within the same time interval At, ie, the speed of
propagation of the waves should not depend on the oscillation frequency of the source and
during whole the propagation process, the waves should suffer not any deformation through
smearing or wake building" (Ivanenko & Sokolov 1953, p. 78). Here, "for the validity of H.P.
it is necessary and sufficient that the Greens' function of d'Alembert's equation is proportional
to the delta-function 5(R-cT) or to its derivatives" (Naas & Schmidt 1974, p. 767). The con-
struction of equations the solutions to which are non-spreading sharp wave fronts has been
developed to a special topic of its own (Gunther 1988). These results may be useful for the
design of dispersionless transmission systems.

Discarding the practical consequencies of (B) for signal transmission, we will adopt the
use of the term HP also for the case that only (A) and (C) apply. This notion includes the ge-
neralization, that the secondary sources belong not necessarily to a sharp wave front. It ex-
tends unexpectedly widely the applicability of Huygens' basic idea of propagation as ordered
sequence of intermediate excitations and irradiations within infinitesimal space-time intervals.
Then, (B) just follows for the special cases mentioned above.

Thus, having this in mind, we will call Huygens's principle (HP) the combination of
action-by-proximity ("elastic waves in ether" in Huygens' pictural imagination) and superposi-
tion of secondary wavelets (Huygens' construction).

2.2. Huygens' construction and Greens'functions

Figure 1 illustrates Huygens' construction by means of, for the present, general field propaga-

tors, G(r,tlroto). G(rtlroto) is assumed to describe the propagation of all necessary informa-
tion about the field considered from the space-time point (r0,to) to (r,t). Huygens' construction
may then be expressed as follows,

(1) G(r,tlr0,t 0 ) = fJ'G(r,t~r1 ,t1 )G(r,,t 1 Jro,t 0 )dr,; to <t, <t

This equation is isomorphic with the Chapman-Kolmogorov equation, the equation of motion
of Markov processes. Since t-t0 can be infinitesimally small, it is, moreover, an alternative
mathematical formulation of HP in the sense of action-by-proximity and superposition of se-
condary wavelets (obviously, these are not necessarily sharp fronts!).



*' GF which represent HP in that sense and obey with respect to r the boundary condi-
tions of the field variables are proposed to be termed Huygens propagator.

It follows at once, that, (i), wave propagation is a Markov process and, (ii), HP in that
sense holds true for diffusion processes as well.

2.3. Problems of interpretation of Kirchhoff/s formula and of Green's functions

Within classical wave theory, the mathematical problem of wave propagation is usually re-
duced to the solution of the wave equation for the field amplitude, while its time derivative is
considered to be secondary. The GF is its solution for unit sources; eg, in 3D free (infinite,
homogeneous, linear) space the expanding impulsive spherical wave

(2) gf (r, t; r0,to) = 6(R/c-t).; Rm-iro -rl, T=--t-tO

41tR

It obeys the Minor Premise, but does not fulfill the Chapman-Kolmogorov equation (1). In-
deed, eq.(l) is obeyed by functions being the solution to partial differential equations offirst
order in time. For wave and other propagation processes of higher order in time one has, ob-
viously, to "return" to systems of first-order equations. Remarkably enough, these are, in ge-
neral, the fundamental relations, viz, constitutive equation(s) and law(s) of conservation, such
as the Maxwell equations supplemented by appropriate constitutive relations.

Huygens propagators contain the common propagation of W(rt) and Oiy(r,t)/It [or V
N/(r,t)] as independent dynamical variables. This lifts the conceptual difficulties of "building
derivations in the nature" (Johns 1974) and of the "occurrence of different sources" in Kirch-
hoffs formula (Miller 1991). Sharp wave fronts correspond to 5-functions in the GF, which
reduce the integrals over volumes to integrals over surfaces, so that diffraction at screens is
treated in a manner resembling Kirchhoffs formula. The treatment of the common propagation
of W(r,t) and c-V(r,t)/It [or Vw(r,t)] as independent dynamical variables is the fundamental
difference between this interpretation of HP and previous ones, but Hadamard (1953) and
Feynman (1948).

3. Discrete modelling
3.1. Markov chains

In one-step Markov chains each two subsequent states, Uk--=(Uka,Uk.2,..) and Uk~b where the se-
cond index may label spatial cells, are connected through a transition matrix, P,

(3) uk+I = P~uk, Uk+l,i = I PijUki

For k-independent P one obtains

(4) Uk = pkuo = pk'lu =pk'l(p.uo) etc.

Thus, the evolution of such chains is describes by the Chapman-Kolmogorov equation(s)

(5) pk = pk-l.p = pk-m.pm, 0 <m < k

This is just the discrete analogue to eq.(l) and describes too the superposition of secondary
"wavelets", despite of that one-step Markov processes are diffusion-like (overdamped waves).

In the discrete case, the principle of action-by-proximity means, that during a single



time interval, no cells can be reached, but the next-neighbour ones. Pascal's triangle is a simple
example of such Markovean "number diffusion" obeying Huygens' recipe of construction.

For first-order processes, the Huygens propagator proves to be identical with the GF
of the difference equation, while the GF of a multi-step equation of motion does, in general,
not. This perfectly parallelizes the continuum case. Again, one has "to return" to a system of
one-step equations of motion for a complete set of independent dynamical variables. As an
example, consider the partial difference equation of 2nd order

(6) Vk+2,i = T(Vk+l,i.l+Vk+l,i+l) + (p2-T2)Vki

being a discrete analogue to the telegraph equation (Goldstein 1951). For p=O, one gets the
Lax scheme (Lax 1954) for hyperbolic equations of first order [see eqs.(7) below]. It also de-
scribes travelling voltage pulses on a network of lossless transmission lines and resistors
(Johns 1977). The corresponding GF is not a Huygens propagator.

However, following d'Alembert, the scalar wave field V may be decomposed into a
left-running part, R, and a right-running part, L,

(7) Vk,i = Lki + Rki; Lk+l,i = PRki-! + TLk,,i-l; Rk+l,i = pLk, i + :rRki+I

(Johns 1977, Zauderer 1989). In matrix form,

(8) (k:: )TA_ A Y& L)( D( LkI); A±Lki = jI+( R k+l) = oA + cA +A R k) = A +L ýi = LL

This is the two-step analogue to eq.(6), and the "Johns matrix" (Hoefer 1989) Gkjiwz(lk*' )i.ý
is the corresponding Huygens propagator. For constant p and T, one has

(9) D2 = r(A_+A+)D + (p2-i 2)1

It is proposed to term Huygens propagators like D proper or irreducible, since elements of
them obey the multi-step equation of motion, too. The corresponding eigenvalue equation
diagonalizes the first-order equations of motion to a physically relevant equation.

3.2. Monolithically modelling semiconductor devices

Semiconductor devices work due to intriguing interactions of different force fields. Since car-
rier and heat diffusion as well as electromagnetic and matter waves are subject to HP, it
should be possible to construct monolithic device models which overcome the drawbacks of
the conventional computing of the subsystems using different algorithms together with inef-
ficient data sweeps. An example is given in Fig. 2. Of course, for optical frequencies, one has
to separate the fast optical oscillations (they will apear as pseudo-sources in Maxwell's
equations). The use of first-order equations within TLM makes slowly varying envelope
approximations not a priori necessary, however. The time-domain (TD) character of TLM
makes this approach appealing, in particular, for fast transient processes. The carrier
momentum (intra-band relaxation!) can be included on equal footing opening promising
alternatives to numerically cumbersome Monte Carlo techniques. Dispersion is relaxation and
thus can be treated within the TD as well (Hoefer 1989). Techniques of diakoptics allow for a
separation of time scales in devices with slow and fast parts. Closed-form solutions for the
Johns matrix facilitate the inclusion of free-space propagation, eg, in external resonators.
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4. Discussion

The following thesis are proposed as a base for an extension of the application of HP in the
generalized sense mentioned above to all propagation phenomena, which can be described by
means of explicit differential and difference equations, respectively:
1. Propagation through action-by-proximity proceeds such, that the field excites secondary
sources, which re-irradiate the field accordingly to the actual boundary and continuity condi-
tions. Topologically, this principle applies on structures with next-neighbour interaction (local
theories; cellular automata; certain coupled maps).
2. The field is represented by a complete set of N independent dynamical variables, where N is
equal to the number of time derivations in the governing equations; in general, there are
several such sets. A complete set obeys a system of N differential and difference equations of
first order, respectively. N may be lowered by symmetry.
3. The Greens (matrix) function (GF) of such a system contains the propagation of that com-
plete set. It represents HP in the sense of action-by proximity and superposition of secondary
wavelets by means of the Chapman-Kolmogorov equation, cf Fig. 1. In order to avoid pertur-
bing boundary terms and to completely represent the propagation problem under considera-
tion, the GF should fulfill the boundary conditions for the field variables in appropriate form.
For such GF the name Huygens propagator is proposed.
4. The elimination of backward motion and the conservation of sharp fronts during propaga-
tion are special cases which evolve naturally from the governing equations and do not need
additional assumptions.

The representation and interpretation of HP proposed here unifies the description of
propagation processes modeled by parabolic and hyperbolic differential equations; it is the
same one for Geometrical and for Wave Optics, the former being a limit case, but without ad-
hoc assumptions. Anisotropy (birefringence - Huygens 1690) is included as well as nonlineari-
ties and fluctuating propagation conditions (Vanneste et al. 1992), audio-holography (Illenyi
& Jessel 1991), the states in electrical power systems (Vasin 1990). The difficulties discussed
by Johns (1974) and Miller (1991) are lifted. The GF of the TLM equations is a proper Huy-
gens propagator exhibiting the modelling and computational advantages described. Johns'
(1987) symmetric condensed node obeys even Huygens'-Hadamard's Minor Premise (Johns &
Enders 1992).

The discrete modelling of wave propagation in d dimensions is connected with a
2d-step Markov chain. This suggest the hypothesis, that the dynamics of any locally inter-
acting system with 2d degrees of freedom can be mapped on a d-dimensional TLM mesh.
Thus, difference equations representing a discrete HP are directly suited for computing all
propagation processes that can be described through explicit differential and/or difference
equations. This should enable the simultaneous and self-consistent computation of interacting
fields of different type, eg, heat diffusion and electromagnetic waves in lasers and in micro-
wave ovens, or carrier transport and electromagnetic fields in semiconductor devices. Advan-
tages are expected, in particular, for the study of fast switching and modulation processes. The
carrier momentum can be included on equal footing, this yields an interesting routine for the
Boltzmann equation. Within explicit schemes, self-consistency can be achieved at ever (time)
step, whereby convergency is considerably accelerated (Hoefer 1989). Delsanto and cowor-
kers (1992) have argued that such an approach to simulation using local interactions is favori-
zed by three practical advantages: (i), extremous speed due to immediate parallelizability; (ii),
complex problems can be treated in a simple manner, since the local internodal connections are
arbitrarily variable; (iii), the same code can be used for quite different problems, since the ite-
rations (difference equations) are principally, ie, up the the values of the coefficients, identical.
Such algorithms belong to the class of cellular automata (Toffioli 1984, Vichniac 1984), but

(" there is no limitation for the state set of the nodes. In other words, they are inherently parallel.
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Abstract: Properties of the SCN TLM method for inhomogeneous problems are
studied via the dispersion relations of the stub-loaded condensed node. It is
originally demonstrated that these relations emulate the physical solution in
the form of two dispersion surfaces. Consequently, errors of the SCN TLM

depend on the intrinsic impedance of the modelled medium and on wave
polarization, which does not happen in case of the classical expanded node.
Included is the comparison of computer effort required by the condensed node

and expanded node modelling for equal values of dispersion limits and ranges
in the analysis of inhomogeneous problems.

1. INTRODUCTION.

Since the proposal of the symmetrical condensed node (SCN) [1], the SCN TLM

method has been gaining a prominent place in science and engineering. In
application to homogeneous electromagnetic problems, the properties of the SCN
TLM have been investigated by Allen et al.[2], Nielsen and Hoefer [3] and

Krumpholz and Russer [4], showing enhanced accuracy in comparison with the
classical expanded node (ExpN) models. In application to inhomogeneous
problems however, the SCN introduces numerical effects which have not been

theoretically predicted, and which may in some cases deteriorate overall
performance of the method. In recent papers Celuch and Gwarek [5][6] have
revealed the effect of bilateral dispersion - meaning the coexistence of
positive and negative dispersion errors within the SCN model of one circuit.
Rationale behind this contribution is to provide a more diverse insight into
the performance of the SCN TLM for inhomogeneous problems.

We shall begin by formulating dispersion relations of the stub-loaded SCN.

From the physical viewpoint, dispersion relations describe how an arbitrary
plane wave is distorted as it propagates through each homogeneous subregion of

the model. Thus, they serve to estimate overall accuracy of the SCN TLM in

application to inhomogeneous circuits of fairly regular geometry, such that

additional errors due to imperfect representation of spatial discontinuities
can be neglected.

Numerical phenomena deduced from the dispersion relations will be demonstrated
in several examples. The notions of dispersion limit and dispersion range will
be put forward, as criteria for evaluating the accuracy of the SCN TLM.

Concluding, comparison of the SCN with the ExpN will be conducted, in terms of

computer resources required by the two models to provide equal dispersion
limits and ranges for various classes of electromagnetic problems.

2. DISPERSION RELATIONS FOR THE STUB-LOADED SCN.

A basic form of the condensed node is capable of representing only one medium
in a circuit. For clarity, we shall consider this reference medium to be
vacuum. Dielectric or magnetic filling in subregions of the circuit is then

modelled at appropriate nodes by mean'; of ;idditional open or short stubs,
respectively ( S1. Scattering at the stub-loaded node is given by:



II IrI(1)

S V =v r

where Vr and VI are vectors of reflected and incident pulses on 12 link lines

and 6 stubs, and the 18x18 matrix S can be found in [1].

Pulses reflected from one node on lines 1..12 are incident at the neighbouring
nodes at the next time-step. Pulses reflected on stubs 13..18 return to the
same node. These relationships can be formally described by a sparse
connection matrix C:

C Vr = Vi (2)

Consider a plane wave supported by the SCN model, with frequency f and
propagation constant B:

B= (13 ,$3 ,$) (3)
- x y z

In this case, the nonzero elements of C become exponential functions of fAt,

3 a, g a, 3 a, for example:x y z

C2,9 = C4,8 = exp( j3xa - j2HfAt)

where a, At are the discretization steps of space and time, respectively.

Complete formal description of the SCN TLM simulation is given by:

C S VI = Vi (4)

Nontrivial solutions of (4) exist if:

det(C S - I) = 0 (5)

where I is an 18x18 identity matrix. Equation (5) will be referred to as a

general dispersion relation of the SCN TLM method.

The SCN TLM method produces solutions to the Maxwell equations as linear
combinations of elgenmodes of (5). For each eigenmode the relation between f
and B is defined by the corresponding eigenvalue of (5). In this way the

eigenvalues and elgenmodes of (5) determine fundamental properties of the SCN
TLM method. Generally, we must consider two aspects:

1. existence of spurious modes,
2. errors in approximating physical modes.

Spurious modes are eigenmodes of relation (5) which do not satisfy the Maxwell
equations. Although spurious modes will not be discussed in this contribution,
it is worth mentioning that observations previously made for the SCN without
stubs [3][4][5] extend also to the stub-loaded case.

For physical modes the relation between f and B given by the eigenvalue of (5)

approaches the dispersion relation of the analytic Maxwell solution in the
infinitisimal limit of a,At--40. For a,At>O however there is a discrepancy
between the analytical and numerical dispersion relation which we shall call a
dispersion error of the SCN TLM.
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Let us recall that for the ExpN modelling numerical dispersion relations
within an arbitrary medium are given by:

2 2 fAt 2 a 2 a 2 a

-r sin - + sin2 + sin 2 sin2 2 0 (6)

where r = a
c at Vwr cr1,-

and for stability, everywhere in the model rV21 in 2D (g =0) and rtV• in 3D.z

Unfortunately, extraction of an equally simple formula for the stub-loaded SCN
from (5) seems a cumbersome task. So far, this has been achieved for the case
of 2D propagation (5][6]. For the mode comprising H ,EE , field components in

a dielectric (#A =1) we have obtained:
r

-cos(21rf At)-(1-1/c )sin 2 ][cos[2nf At)-(1-1/c )sin 2 y]+ (7)
r .2 2 ~a

3aa 2
cos cos 2 1=0

Similarly for the E H H - mode in a magnetic medium (c =1):zxy r

-[cos(2wf At)-(1-1/pr )sin 2 + [cos(2nf At)-(1-1/r )sin2 (8)

[ A 3a i2
cos --- cos 1 =0

For all other cases we study the dispersion errors by numerically plotting the
eigenvalues of (5).

3. INTERPRETATION OF DISPERSION ERRORS.

Dispersion errors contaminate the SCN TLM simulation in two ways:

In elgenvalue problems B is enforced correctly by the boundary conditions. The

computed value of f is such that it satisfies the numerical dispersion
relation (5) or (8), and it is generally different from the physical value
fph. We define a relative frequency error as:

3f = (f - fph) / fph (9)

By T7 we shall denote a value of Hf corresponding to the discretization of
a/A=0.1.

In deterministic problems a wave of a particular frequency f is excited in the
model, and it propagates with wavelength A different from the analytical valii'

* of A . We define a relative wavelength error as:

= (A - A ) / A (10)
0 0



To verify the conclusions drawn from the dispersion relations, we shall
consider cubic resonators appropriately closed by electric or magnetic walls.
A relative error of resonant frequency computed for mode (p,q,r) must be equal
to the error predicted for the (p,q,r) direction of propagation.

4. SPLITTING OF THE SCN EIGENMODES IN DIELECTRICS.

Let us begin by considering the SCN models of isotropic dielectrics. By
numerically plotting (5) we detect two eigensolutions, both reducing the
physical dispersion relation for a,tAt--O and to the same numerical dispersion
relation for c =1. Dispersion errors associated with the two eigensolutions

are presented in Fig.l. Clearly, a single dispersion surface of the basic SCN
splits into two dispersion surfaces as a result of stub-loading. The two
surfaces overlap along axial and 3D diagonal directions.

In case of propagation in the xy-plane the two corresponding eigenmodes have a
physical interpretation of the H E E -mode (S1 in Fig. 1, described by (7)) andzxy

the E H H -mode (S2 in Fig. 1).
zxy

Note that for the ExpN models a single dispersion surface is maintained within
any medium (Fig.1).

5. DISPERSION AS A FUNCTION OF IMPEDANCE.

For the ExpN modelling, dispersion errors depend on wave velocity within a
particular medium (see (6)); for the SCN, they additionally depend on
intrinsic impedance. Considering a magnetic medium in place of a dielectric,
we obtain the same dispersion surfaces as shown in Fig. 1, but with reversed
physical interpretation of eigenmodes S1, S2. This is confirmed by duality of
relations (7) and (8).

To demonstrate this property of the SCN, we compute cutoff frequencies of the
H and H modes in square waveguides homogeneously filled with media of

10 11

various c , . Results are shown in Fig.2 versus errors predicted by (5), (7).
r r

6. DISPERSION AS A FUNCTION OF WAVE POLARIZATION.

In the stub-loaded SCN a single dispersion surface is maintained only for
media of unit normalized impedance (c=j ). In all other media,

r r

we detect two dispersion surfaces corresponding to two orthogonal
polarizations.

analytic fph[GHz] mode calculated f [GHz] e51f [%]

1.500 H 1.509

2.121 H 11  2.091 -1.43
2.121 _ Eli 2.130 0.41

H 3.311 -1.29

3.354E 1 2 3.408 1.6112 !

Tab.I.: Cutoff frequencies in a square wavepuid( S_)x50mm. flied witth I
dielectric of £r= 4 . Cell size 1.11 rn')A,, il ;,:('MR



(, An appealing consequence for eigenvalue problems consists in splitting the

cutoff frequencies of H and E waveguide modes (Tab.1). In deterministic
amn amn

problems involving dual polarization, we detect chan-e of polarization of
waves propagating along other than axial or 3D diagonal directions, as
exemplified in Fig.3.

7. METHOD OF COMPARISON WITH ExPN.

Hitherto the SCN and ExpN have been compared by relating their dispersion
errors for a particular discretization which (in case of homogeneous circuits)
appears advantageous for the SCN 12](3]. On the other hand, it is known that
the SCN TLM requires more computer effort per cell per iteration than the ExpN
FDTD (5]. Thus, meaningful comparison of the two models will be via computer
effort required by each of them for equal overall accuracy.

It has been proposed [6] to compare the accuracy of two spatial models by
means of two parameters:

6f - dispersion limit (maximum absolute value of the dispersion error),
max

!f . - dispersion range (difference between the highest and 1e0 tmnt

dispersion error in the model).

In many linear applications, average value of the dispersion error can be
treated as a systematic error and a posteriori eliminated from the results;
then, 6f is of main interest.

i nt

Cr # 1 2 4 9 16

af 1.11 1.37 1.51 1.58 1.60
max

ExpN ofhom 1.11 1.10 1.10 1.09 1.09
Int

_f_ nh 1.11 1.37 1.51 1.58 1.60Int

65f 0.62 0.62 0.71 0.75 0.76
SCN max

Sfhom 0.62 1.03 1.32 1.47 1.51

af I/nh 0. 62 1. 03 1. 32 1. 47 1. 51
Int

af 0.62 0.62 1.30 1.84 2.20

SCN max
0fh.m 0.62 1.05 1.45 1.66 1.82

11 =C i nt
r r

rfInh 0.62 1.24 1.92 2.46 2.82
intL

Tab.2.: Normalized (a/A=0.1) dispersion limits and dispersion ranges [/} for
the 3D SCN and ExpN models.
afh0,: dispersion range within an individual medium

mnt

Sflnh: dispersion range in a circuit comprising this medii!- :ri;
nt

In Tab.2 we summarize the values 2 ilr.:'

and ExpN in various medi;,"

dispersion, we dist in ,ipu

tini t no r rn;1 I m



The data of Tab. 2 should be related to the diagrams of the SCN and ExpN
computer effort presented Fig.4.

8. CONCLUSIONS.

It has been shown that the dispersion relations of the stub-loaded SCN define
two -ispersion surfaces approximating the physical solution. For propagation
in a coordinate plane the two corresponding eigenmodes of the SCN TLM have
simple physical meaning of TE and TM waves. Practical consequence is tnat the
dispersion errors of the SCN TLM method depend on the polarization of emulated
fields and on the intrinsic impedance of the modelled medium. These numerical
effects do not contaminate the ExpN modelling.

Interesting observations are made by relating the accuracy of the ExpN and SCN
models to the required computer effort. Only in application to homogeneous
circuits advantages of the SCN as claimed by previous authors [21(3] are
unambigously confirmed.

In the presence of inhomogeneitites, computer effort increases more rapidly
for the SCN than for the ExpN. Also the dispersion range of the SCN increases
faster and may exceed that of the ExpN in p. oblems involving significant
differences of media parameters. However, the dispersion limit of the SCN will
typically remain smaller than that of the ExpN, except for the theoretical
case of media with er=pr. Summarizing, the ExpN appears promising for 2D and
vector 2D problems which include in particular full-wave analysis of
dispersive transmission lines (7](8](9]. For general inhomogeneous 3D problems
there appears to be good compensation between lower dispersion limit of the
SCN and higher efficiency of the ExpN.

REFERENCES:

(11 P.B.Johns, "A Symmetrical Condensed Node for the TLM Method", IEEE Trans.
on MTT, vol.MTT-35, April 1987, pp.370-377.

121 R.Allen,A.Mallik,P.Johns, "Numerical Results for the Symmetrical
Condensed TLM Node", IEEE Trans. on MTT, vol.MTT-35, April 1987,
pp. 378-382.

(31 J.S.Nielsen, W.J.R.Hoefer, "rffect of dispersion in the 3-D condensed
node TLM mesh", IEEE MTT-S Digest, Albuquerque 1992, pp.853-855.

[4] M.Krumpholz, P.Russer, "A generalised method for the calculation of TLM
dispersion relations", Proc.23rd Eur.Microwave Conf., Madrid 1993,
pp.287-289.

(51 M.Celuch-Marcysiak, W.K.Gwarek, "On the aspects of selecting the
symmetrical condensed node or the expanded node modelling for
electromagnetic simulations", Proc.22nd Eur.Microwave Cord., Helsinki
1992.

[61 M.Celuch-Marcysiak, W.K.Gwarek, "On the Effect of Bilateral Dispersion in
Inhomogeneous Symmetrical Condensed Node Modelling", accepted for
publication in IEEE Trans. on MTT.

[7] C.Mroczkowski, W.K.Gwarek, "Microwave circuits described by
two-dimensional vector wave equation and their analysis by FD-TD method",
Proc. 21st Eur. Microwave Conf.. Stuttgart 1991, pp. 199-204.

(81 H.Jin, R.Vahldieck, S.Xiao, "A full-wave analysis of arbitrary guiding
structures using a two-dimensional TLM mesh", Proc.21st Eur.Microwavw
Conf., Stuttgart 1991, pp.205-210.

(9] M.Celuch-Marcysiak, W.K.Gwarek, "Time-Domain Analysis of Dispersivc:
Transmission Lines", Journal de Physique Ill. France, March 1993,
pp.581-591.



ExpN SCN - SI SCN - S2

1.2 -f MX] 1.2" 6f {] 1.2" a[ [1]

0.8 0.8 - OA08- AB

0.4 0.4 C 0.4 C

0.0 0.0 0.0ý 4__ 6 8 C __ ~F 4 6 8 10

-0.4 D r -0.4 B 0.4 1 r

-0.8 C -0.8 Q -. 8

-1.2 B -1.2 -1.2

-1.6 A -1.6 -1.6

Fig. 1. Frequency errors of ExpN (single dispersion surface) and SCN (two
eigensurfaces) in a dielectric (Ar=l), for a/A=O. 1 and four directions

of propagation: A (10,O), B- (1,2,0), C- (1,1,0), 0 - (1,D,1).
errors predicted fromi relations (5), (6) and (8)
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Abstract

A method for generation of lumped element equivalent circuits and the corresponing systems of ordi-
nary differential equations for distributed microwave circuits is presented. Starting with a TLM analysis
of a distributed multiport circuit the impulse response functions for reflection and transmission between
the ports are computed. After Laplace-transforming the impulse functions numerically the poles are ex-
tracted within a specified domain of the complex frequency plane. FRom these poles canonical equivalent
circuits representing the branches of the lumped element equivalent circuit are derived directly. By this
way the topology as well as the parameters of the lumped element equivalent circuit are determined.
Also the system of first order differential state equations is generated. The method is demonstrated in
modeling of distributed one-port and multiport circuits.

1 Introduction

The transmission line matrix (TLM) method is a powerful method for modeling distributed microwave
circuits (1]. Analyzing the pulse transmission and reflection behaviour in time domain provides the com-
plete frequency domain information for a broad frequency band after Fourier or Laplace transformation
Diakoptics allows the analysis of complex distributed circuits by subdividing the circuit into subcircuits (21.
The set of all the impulse reflection and transmission responses constitutes the complete description of the
subcircuit. In the traditional application of time domain diakoptics in TLM the connection of the subcir-
cults requires the convolution of the response functions. The storage of the response functions in numerical
form requires large memory, and performing the numerical convolutions requires considerable computing
time. This problem is encountered especially in cases where the subcircwits exhibit a high Q factor and
the impulse responses, consequently, decay slowly with time.

An alternative way to describe the subcircuits is to find an equivalent system of equations or an equivalent
subcircuit exhibiting, within a specified range of frequencies, the same signal transmission behaviour as the
subcircuit to be modeled. The restriction of the model to a finite range of frequencies allows to model the
subcircuit by a system of ordinary differential equations or by a lumped element circuit. Lumped element
modeling has already been introduced in TLM 13, 41 and has been extended to discrete state equation
description 15. 61.

(



2 The Modeling of a Linear Reciprocal Lossless One-Port r

L n

L0 C".

Cn

Figure 1: Equivalent Circuit of the Impedance Y(p).

In the following we restrict our considerations to time-invariant linear passive lossless one-ports. In order
to establish a lumped element equivalent circuit for the one-port we first calculate the impulse response by
TLM simulation. From this the impedance or admittance function is calculated by Laplace transformation.
After determining the location of the poles a lumped element equivalent circuit is determined by fitting of
the location and residue values of the poles.

We start with the TLMT calculation of the impulse response function in terms of voltage and current. The
Impedance or admittance representation may be chosen. We discuss the method for admittance modeling.
For the impedance modeling the way to proceed follows from the principle of duality. The admittance
response function y(t) constitutes the relation

i(t) = f-0y~t, - t)u(tl~dt, 1

The admittance representation can be obtained directly from TLM computations if input short circuit
conditions are used. In the case of lossless circuits or circuits with high Q value the response functions
corresponding to the impedance representation or the admittance representation should be determined
directly from simulation under short circuit or open circuit conditions, respectively. This allows a mor"
accurate determination of the poles than the simulation under reflection-free termination.

From the response function y(t) or z(t), respectively, the admittance Y(p) or the Impedance Z(p) is
calculated by Laplace transform:

Y(p) = £{y(t)} = f y(t)e-Ptdt (2)

The Laplace Transform is performed numerically. In the following we restrict our considerations to the
modeling of the admittance Y(p). The corresponding rules for impedance modeling follow by the principle
of duality. The poles pi of the Laplace transform Y(p) are determined within a specified region of the
complex frequency plane p = a + jw. This may be done by methods of optimization as for example by a
gradient search strategy.

The next step is the synthesis of the linear passive lossless time-invariant one-port. We use the canonical
Foster realization 171. The admittance Y(p) of any linear passive lossless time-invariant one-port may be
represented by

Y(p) = -A"' E - +.4p C0 -



p!

From this expansion we may determine the equivalent circuit directly. Each term in the sum eq. (3)
corresponds to an admittance. All these admittances are connected in parallel. The equivalent circuit
of Y(p) is depicted in Fig. (1). In eq. (3) Ao and A, correspond to a conductor and to a capacitor,
respectively. The coefficients A& describe RL series circuits for real o, and RLC series resonant circuits
for pairs of complex conjugate o,, and a,,.

"* The term A0 corresponds to an inductor Lo

1
Lo = -(4)A0

"* The term A, corresponds to a capacitor C.

C. = Ao (5)

"* For a pair of poles on the imaginary axis at -jw and at jw we obtain a series resonant circuit with

L, = 1(6)A.
A,,C. = W(7)

3 The Modeling of a Linear Reciprocal Lossless Multiport

Let us determine a lumped element rectance multiport which models a distributed linear rectance multiport
within a specified range of frequency. We start again with TLM simulation of the impulse transmission
behaviour of the circuit. From the pulse transmission functions yki(t) we determine by Laplace trans-
pormation the elements

Ykj(p) = £{yk,(t)} (8)

of the admittance matrix Y(p). The matrix elements Yk of the admittance matrix of a reactance multiport
may be represented by

A(A( )p (9)
Y(P) -- +=p +W2+

C Ll LL n *: 
2

. l3

3
L

1 21

0- 
2

( Figure 2: Compact two-port and three-port elements.

where the A(") are real, symmetric and positive semidefinite matrices. The proof is given for two-ports
in 181 and holds also for multiports. Each of the matrices A(n) may be represented as a sum real symmetric

3
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4 The Equivalent System of Differential Equations

In the most general case our equivalent circuit will have one conductor GI, one capacitor C•, M RL-circuits
and N RLCG-circuits in parallel. Using the currents of the inductors and the voltages of the capacitors
as the state variables we obtain the following first-order differential equations:

1. The conductor Go is described by
io Gou (11)

2. The capacitor C, is described by
du

3. The M RL--circuits are described by

dim Rm 1 (
d--- t - Lmtin + - U (13)

for m = 2 to in = Al + 1

4. The RLCG-circuits are described by

di in 1'(U n) (14)

d ucn 1. Gn
dn -'n cn (15)

for n = Al + 2 to ni = Af + N + I

Tue total current i flowing through the equivalent circuit is given by

M+N+I

,: yZ i, (16)

11=0

5 Examples

As an examlple for modeling, a one-port we have chosen the iris-coupled rectangular wax'evluide cavity
rso-nator (lep)ictedl iil Fig. 1. h'll( resonator is based ot a iiWR 28 rectangular waveguu,'le.



IThIe resonaitor ad1in11ance Y wwas compulted by TIM simulation and F'ourier transforil-ation of thie itnIpIIl'e
response. II the case oif 1n(xeling Iossless Circuits or low loss circifits lFourier transformaition instad(l ,l

Laplace transformation can be us.d. The poles and the parameters of the lumped element equivalent. circuit

summarized in Table I were determnined by optimization. [he c(e•ficents .. ,, were obtained by least-square

fitting at. 20 points between consecutive poles. The imaginary part ' { Y } of the admit tance computed using

TLM analysis as well as the admittance of theW lumped element equivalent circuit are plotted in Fig. la..\

comparison of the phase of the S-parameters of an iris-coupled waveguide cavity computed (lirectly from

the T1LM analysis and via the hlmped element model is given in Fig. 4b.

Table 1:

Poles and Lumped Element Parameters
1 2 3 4 5

0l, 0. 28.14 29.76 42.77 46.93

A,, 6.16 10' 2,26 10' 2.26 10" 3.96 10' 4.0327 10"

"'L4/nH 16.24 22.11 22.17 12.63 12.40

C, J/F - 1.44 1.29 1.09 0.927

As an example of a two-port we consider an inductive iris in a rectangular waveguide WR 28 as shown in

Fig. 5. The Y-parameters computed for this two-port using TLM analysis are plotted in Figs. 6a and 6b.

Fig. 6c gives a comparison of magnitude of S-parameters of the inductive iris. The element values obtained

for the shunt admittance (based on Ao/p + AIp approximation) are L - 2.738 nH and C = 6.291 IF. The

element value obtained for the series admittance (based on A/p approximation) is L = 1.357 nH. Fig. (7)

shows the lumped element equivalent circuit for the inductive iris in the rectangular waveguide.

6 Conclusion

We have presented a new method for computer aided generation of lumped element equivalent circuits for

linear reciprocal distributed microwave circuits. The method is based on a field theoretical analysis of the

distributed multiport circuit. It allows to generate the topology as weil as the parameters of the lumped

element equivalent circuit after specifying an arbitrary but finite interval of frequencies for the lumped

element equivalent circuit.

I I N Iilgl~lil m lnnulludlam~mmlnnam "im 5
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Figure 3: Resonator with iris-coupling to waveguide.
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Figure 5: Inductive iris in rectangular waveguide.
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Figure 7: Equivalent circuit for the inductive iris in the rectangular waveguide.
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Towards Exactly Modelling Open/Absorbing Boundaries

P. ENDERS (a) & A. J. WLODARCZYK (b)

(a) Stendaler Stralle 126, D-12627 Berlin, FRG
(b) Kimberley Communications Consultants

104 GPT Business Park, Beeston, Nottingham NG9 2ND, UK

Open/absorbing boundaries can be modelled exactly by means of Green's functions (GF) which describe
the genuine field propagation properties of the domain considered. In many cases, the laborous space-
time iteration usually necessary for calculating the GF can be avoided by means of closed-form
solutions of the difference equations of the numerica routine used. A general approach for obtaining
such solutions will be described and closed-form solutions for the 2D scalar wave mesh and for the
symmetrical condensed node routine of the transmission-line matrix modelling method will be presented.

1. INTRODUCTION

The numerical simulation of open/absorbing boundaries is an old challenge of computing. The
correct description of the reflection of waves at arbitrary angles of incidence requires to
account for the complete reaction of the physical space behind the mathematical boundary.
This response behaviour is contained in the so-called Green's function (GF). The GF
G(r,tjr 0,t0 ) describes the field propagation from the space-time point (ro,tj) to the point (rt).
It is, thus, a clear concept and, moreover, one of the most powerful tools of mathematical
physics. Its full capabilities have not yet been employed in computing. The application to the
present problem has been investigated by Hoefer (1989) and by Krumpholz and Russer (1993)
within the transmission-line matrix modelling method (TLM).

The GF is the solution to the field equations with unit source. Hence, its computation requires
usually to perform the complete space-time iterations of the numerical routine. In many cases,
however, it is possible to circumvent this time-consuming procedure by applying closed-form
solutions to the difference equations of the numerical routine. This contribution presents a
simple approach to obtain such solutions for explicit FD algorithms, ie, for cellular automata
with infinite state space of the nodes. Other applications of such non-iterative formulae consist
in their general information on the accuracy of the method (Goldstein 1951, Enders & de
Cogan 1993) and due to the tight connection of GF with the transfer functions.

Cellular automata (Farmer et al 1984) are network structures, where the state of a cell depends
only on the states of its neighbouring cells. Consequently, they are predestined to yield discrete
models of processes for which the principle of action-by-proximity holds, ie, virtually all
physicatl propagation. Such structures are highly interesting from several points of view. In
particular, transputer arrays are able to realize such topological structures and, thus, to
materialize the "computing space" (Zuse 1969). The next-neighbour interaction structure
favours parallel information processing (eg, Johns 1988, Vanneste et al. 1992). This is a
distinctive advantage of explicit algorithms when compared with implicit ones. Moreover,
within explicit routines, diakoptic methods are much easier to implement and, for nonlinear
problems, self-consistency can be reached at each (time) step.

To be specific, in this contribution, the TLM difference equations for the 2D free space and for
the symmetrical condensed node will be considered.



2.2D SCALAR WAVES

For the incident pulses, the governing equations (Johns 1974) read in condensed form

=2) x x --_ E(21

k+ I y y ? -Y]HS] (2.1)
k+11 NJ -Y Y kkNj

where *xW(ij)=-W(i+lj), +xW(ij)=+W(i-1j) etc. are short-hand notations for step
operators acting on the space coordinates. The reflected pulses have been eliminated from the
original equations as they are irrelevant for this investigation. The space considered is thus the
product space of the 4D vector space of the travel directions, W... N ("direction space"), of the
2D vector space of the (i, j) coordinates ("coordinate space"), and of the ID vector space of
the time axis. Vectors and matrices of the product space will be designed by bold italic capitals
(H), those of the direction space - by italic capitals (J), and those of the coordinate space - by
bold capitals (W).

The Johns matrix, J, yielding the general solution of these equations as function of the initial
values is defined as

(W) (WWW ,jWS j WE j WN'

s S isw SS jSE jSN

E k -k'Jij E{] {EW ES jEE JEN (2.2)

0k Nji,j 0, N ji, j, [jMW JNS JE O

The difference to eq.(5) of Hoefer's (1989) paper results from the fact that there, the "incident
pulses" are treated as excitations by an external source. From eq. (2.1) one obtains

,Jk . •., , = H k-kV ',i6 jj, (2.3)

where each matrix element of the operator Hk-k' acts on the initial Kronecker distribution 5iix
8.. Thus, J can be calculated by first diagonalizing H and then transforming back the powered
diagonal form. The following steps of calculation are equivalent to this method, but, moreover,
yield the solution of the system (2. 1) for other initial conditions as well (eg, OW... 3W given).
First, H will be diagonalized in the direction space, then, the resulting partial difference
equation in the coordinate-time space will be solved algebraically by simple means.

First step. The eigenvalue equation to H reads

_ P( _) l=( 2 _ 1)(A? _ P + 1); P + x +y+y) (2.4)

According to the Caley-Hamilton theorem, H obeys its own eigenvalue equation, ie,

H 4 - P(H 3 -H)- I = O (2.5)

(H and P commute; P is not a vector). Applying this operator equation on eq.(2. 1) yields



=p _p +(2.6)
E EE E

k+4{ N k+3{NI k+l } N k N

In other words, each component, UM, of the four-vector U=(W, S, E, N)t obeys the '_,urth-
order partial difference equation

k+4UM = x+x+y+y)(k+3UM-k+IUM)+kUM; M = W,S,E,N (2.7)
2k+4UMk3M-+1M+kM

Such multi-step, but ditoupled equations are often easier to solve algebraically, than systems
like (2.1).

Second step. In contrast to the scalar eigenvalue equation (2.4), the "eigenoperator" equation
(2.5) does not factorize, since the matrix (H-1) is singular. In fact,

S +xz z+z x I+xz2X 2 2
1+xz I +xz x+xz

A=_H 2 -PH+I= 2 2 2 _ *0 (2.8)z+z. l +xz 1 +xz

2 2 2
-+XZ x+x l+x 1

2 2 2

Moreover, there are four initial value sets, oW(ij).. .oN(ij), which only specify the solution of
the system (2.1). However, the matrix A has a two-fold eigenvalue zero. This means, that there
is a 2D subspace of the direction space, where AU=O. The vectors of this subspace are special
solutions to eq. (2.6). Their explicit form is

"z-x D l-xz3I- X D3 _j' DI, D3 arbitrary (2.9)
" z-x DI+ 1-xz D

The operators ( -x2)-1 makes these solutions inconvenient for practical computations,
however. - Nevertheless, the solutions of the equation

k+2U = l(x+x+y+y)k+lUS-kUs (2.10)

are special solutions to eq. (2.7). We first solve this equation and then construct more general
ones from appropriate linear combinations of these solutions.

Third step. The 2D simple random walk has the solution kTij=kTi+j'kTijj, where

kTj=2-k((k _) /2) for (k-j)->0 even, and kTj=O otherwise, is the solution to the symmetric

Bernoulli trial or ID simple random walk, k+lTj='/2(kTj+l+kTj..), with Kronecker initial data,
oT-=-o0. Unfortunately, eq.(2.9) cannot be factorized in terms of rotated coordinates. But it
can be solved by means of the same simple Gi technique (successive iteration of the equivalent



integral equation; cf Duhamel's principle, Zauderer 1989) which has been applied to the I D
case (Enders & de Cogan 1993). The result is the special solution

k usJ ij=2 (-4)_-m k 0 m k-2mTi'j; k - 2m ýli+Jl +2.11)

Fourth step. More general solutions to eq. (2.7) can be constructed by convolution with a
function which adjusts the initial values prescribed, o... 3UP. It is impossible to form from Us a
fundamental solution Uf which, due to

0 U =0T; iUf= 2 Uf=3 Uf =0 (2.12)

would be the ideal starting distribution. But one may use the "basic solution"

kUb = 2-kkUs + 2-2k_2Us (2.13)

having much simpler initial distributions, than Us, viz,

kUb=kT; k =0,1,2,3 (2.14)

Therefore, the ansatz

k
b

kUi,j= •i-i'j-j,k-kXkUi'," Ci,j,k=0 for k<0 (2.15)

k'=k-3 i',j'

is proposed, where the coefficients, cij,k, can be expressed in terms of the shift operators x... y
and calculated from a simple system of 4 linear equations,

k
I ckk.(x,x,y,y)kT(i,j)=kUP(i,j); k = 0,1,2,3 (2.16)

k'=0

The compatibility of UP with eq. (2.7) guarantees that of the solution (2.15).

3.33D ELECTROMAGNETIC WAVES

For three-dimensional electromagnetic waves, the TLM mesh is favourably build with the SCN
(Johns 1974). It has become the standard node here; corresponding software is commercially
available. The SCN contains 12 pairs of lines for 12 travelling voltage pulses, VI... 12 (3
dimensions x forward & backward motion x 2 polarizations) corresponding to the 12 field
variables in Maxwell's equations. Often one can eliminate 6 of them (eg, D and B). Then, the
treatment of 6 degrees of freedom (6 first-order in time differential equations for the remaining
field variables, eg, E and H) by means of 12 (first-order in the time step) difference equations
leads to the known ambiguities in the relationships between the TLM voltage pulses and the
electromagnetic field variables. Here, Johns' (1987) original relations together with the
transformation to diagonal ports proposed by Wlodarczyk (1992) will be used; the latter
representation of the SCN is conceptually and computationally simpler.



The scattering of the voltage pulses is described through a 12x 12 matrix, Sa, that gives the 12
outgoing (reflected) pulses, k Vr,...12-kVrl... 12(l,m,n) at node (l,m,n), in terms of the 12
incoming pulses, kV'I... 12. At the next time step, k--*k+l, the reflected pulses become incident
pulses at the neighbouring nodes. We will diagonalize a modified scattering matrix, which
connects kV'l... 12(l,m,n) with k+lVil... 12(l',m',n), where the nodes (l,m,n) and (l',m',n') are
neighbours. The solution of the resulting difference equation for one of the voltage pulses, eg,
kV'2, yields closed expressions for all values of kV'l... 12(l,m,n) in terms of any set of previous
distributions, k'V' 1... 12 (l',m,n), k'<k, k' fixed, and in dependence upon any (external) sources,
kVext I... 12(l,m',n'), Ok<k. As the electromagnetic field variables are linear combinations of
the incident voltage pulses, we obtain immediately solutions for those, after properly
accounting for the initial conditions.

The diagonal port representation (Wlodarczyk 1992) of the SCN yields a 6x6 block
diagonalization of Sa. Eliminating the reflected pulses, the diagonal port scattering matrix, Sd,
yields k+IVi=Sl 2*kVi, kVi=(kV'1, ... , kVil2)t. The 12x12 matrix S122 is block-diagonal, such
that the equation k+2 Vi=S12 2 *kVi decays in two 6x6 systems (decoupling of polarizations).
The one reads

2 [0 xhl,2Ef X=( j xV(l,m,n,)=V(l +1,m,n)
3+[6 3 16 X x _x01Y_0\ (3.1)Z'O [[ X=(- R V(I,m,n,)=V(I-l,m,n)

k+2L SJk 6

This system is diagonalized as above. Its eigenvalue equation reads

(1IX) 2(X2 -Q, + 1)2=0; Q---( 4(Y+xz+ YZ-4); X-x+x etc (3.2)

Hence, for each component of the vector kV a partial difference equation of quasi sixth order
in k is obtained,

k+12V = (2 +2Q)k+IoV - (3+4Q+Q 2)k+8V + (4+4Q+2Q 2)k+6V

- (3+4Q+Q 2)k+4V + (2+2Q)k+ 2V - kV (3.3)

The voltages at odd k-values are calculated using the original scattering matrix, S12.

Special solutions to eq.(3.3) can be obtained by exploiting the factorization of the eigenvalue
equation (3.2). For instance, each solution to the equation

kV(l,m,n) = Q k_2V(I,m,n) - k. 4V(I,m,n) (3.4)

is a special solution to eq. (3.3). Eq. (3.4) is much simpler, but it requires that the initial
conditions exhibit some symmetry, see below.

The two-step Markov chain (3.4) is similar to that for the node voltage within the 1D TLM
diffusion model and thus may be calculated in the same manner (Enders & de Cogan 1993).
First, consider the simpler partial difference equation

kVW(I,m,n) = Q k-2V°(I,mn) (3.5)



A cubic-isotropic solution of this equation is

k p+q+rkV0(l~mvn = -~~ ITq()r() --- k/2k=(-)k( , ,(1 (-3) 2 (3.6)
p+q+r=O p T (l)T (P + q + r) / 2

p,qj!r k/ ,

Other solutions are possible, such as quasi- ID waves, kV(l,m,n)=kV(l), for instance. Note, that
such a discrete wave (3.4) when emitted by a Kronecker source forms a cubic octahedron
(Archimedean body).

Second, the solution to eq.(3.4) is developed into a series of the solution (3.6) yielding

" [k/•4 ]_lk'/2-k)_.V

kV = •(-1)1 k' k-4kV 0 [k/4] =- integer part of(k/4) (3.7)
k =O k'

This completes the solution to eq.(3.4); the voltages for odd k-values and kVi7... 12 are to be
calculated from the original equations.

4. SUMMARY AND CONCLUSIONS

A simple, but quite general method for calculating closed algebraic solutions to TLM
difference equations has been described. This method applies to virtually all explicit one-step
(FD) algorithms. It should be interesting to extend it to other algorithms, too, in particular, to
ones for the very electromagnetic fields (eg, Chen et al 1991). It is more direct, than the
Fourier and Laplace transform techniques applied by Goldstein (1951) and by Russer &
Krumpholz (1993), respectively. From such solutions, many other formulae for various
applications can be derived in a simple way. Among others, applications are seen in the
following areas:
- modelling radiative and dispersive boundary conditions more exactly;
- computing the Green's function (Johns matrix) and related (transfer) functions more

effectively (note that the usual treatment of Huygens' construction and principle, respectively,
by means of Kirchhoffs formula yields no algorithm for actual computations, eg, Zauderer
1989);

- saving iterations over the spatial mesh, the application of graded meshes and other
sophistications which are difficult to implement into general-purpose software;

- examination of general properties of the algorithm (accuracy, convergency etc);
- improvement of routines for solving stationary problems basing on approaches like

probabilistic potential theory (cf. Johns & Rowbotham 1981).

Acknowledgement: We are indebted to M. Krumpholz for useful discussions and making his
manuscripts available to us prior publication.
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